Muutke küpsiste eelistusi

Landmark-Based Image Analysis: Using Geometric and Intensity Models Softcover reprint of hardcover 1st ed. 2001 [Pehme köide]

  • Formaat: Paperback / softback, 306 pages, kõrgus x laius: 235x155 mm, kaal: 553 g, XIV, 306 p., 1 Paperback / softback
  • Sari: Computational Imaging and Vision 21
  • Ilmumisaeg: 15-Dec-2010
  • Kirjastus: Springer
  • ISBN-10: 9048156300
  • ISBN-13: 9789048156306
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 306 pages, kõrgus x laius: 235x155 mm, kaal: 553 g, XIV, 306 p., 1 Paperback / softback
  • Sari: Computational Imaging and Vision 21
  • Ilmumisaeg: 15-Dec-2010
  • Kirjastus: Springer
  • ISBN-10: 9048156300
  • ISBN-13: 9789048156306
Teised raamatud teemal:
Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari­ ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com­ putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy­ sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre­ sent the image intensities, i. e. ,the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im­ ages such as traditional 20 video images or 3D medical tomographic images.

Muu info

Springer Book Archives
1 Introduction and Overview.- 2 Detection and Localization of Point Landmarks.- 3 Performance Characterization of Landmark Operators.- 4 Elastic Registration of Multimodality Images.