Muutke küpsiste eelistusi

Latent Variable Analysis and Signal Separation: 14th International Conference, LVA/ICA 2018, Guildford, UK, July 25, 2018, Proceedings 2018 ed. [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 580 pages, kõrgus x laius: 235x155 mm, kaal: 908 g, 150 Illustrations, black and white; XVII, 580 p. 150 illus., 1 Paperback / softback
  • Sari: Theoretical Computer Science and General Issues 10891
  • Ilmumisaeg: 06-Jun-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319937634
  • ISBN-13: 9783319937632
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 580 pages, kõrgus x laius: 235x155 mm, kaal: 908 g, 150 Illustrations, black and white; XVII, 580 p. 150 illus., 1 Paperback / softback
  • Sari: Theoretical Computer Science and General Issues 10891
  • Ilmumisaeg: 06-Jun-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319937634
  • ISBN-13: 9783319937632
This book constitutes the proceedings of the 14th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2018, held in  Guildford, UK, in July 2018.
The 52 full papers  were carefully reviewed and selected from 62 initial submissions. 
As research topics the papers encompass a wide range of general mixtures of latent variables models but also theories and tools drawn from a great variety of disciplines such as structured tensor decompositions and applications; matrix and tensor factorizations; ICA methods; nonlinear mixtures; audio data and methods; signal separation evaluation campaign; deep learning and data-driven methods; advances in phase retrieval and applications; sparsity-related methods; and biomedical data and methods.
Structured Tensor Decompositions and Applications.- Matrix and Tensor Factorizations.- ICA Methods.- Nonlinear Mixtures.- Audio Data and Methods.- Signal Separation Evaluation Campaign.- Deep Learning and Data-driven Methods.- Advances in Phase Retrieval and Applications.- Sparsity-Related Methods.- Biomedical Data and Methods.