Muutke küpsiste eelistusi

Lattice Gauge Theory: A Challenge in Large-Scale Computing 1986 ed. [Kõva köide]

  • Formaat: Hardback, 334 pages, kaal: 781 g, VIII, 334 p., 1 Hardback
  • Sari: NATO Science Series B: 140
  • Ilmumisaeg: 24-Feb-1999
  • Kirjastus: Kluwer Academic/Plenum Publishers
  • ISBN-10: 0306423766
  • ISBN-13: 9780306423765
Teised raamatud teemal:
  • Kõva köide
  • Hind: 76,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 89,95 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 334 pages, kaal: 781 g, VIII, 334 p., 1 Hardback
  • Sari: NATO Science Series B: 140
  • Ilmumisaeg: 24-Feb-1999
  • Kirjastus: Kluwer Academic/Plenum Publishers
  • ISBN-10: 0306423766
  • ISBN-13: 9780306423765
Teised raamatud teemal:
This volume presents the contributions to the international workshop entitled "Lattice Gauge Theory - a Challenge in Large Scale Computing" that was held in Wuppertal from November 4 to 7, 1985. This meeting was the third in a series of European workshops in this rapidly developing field. The meeting intended to bring together both active university research­ ers in this field and scientists from industry and research centers who pursue large scale computing projects on problems within lattice gauge theory. These problems are extremely demanding from the point of view of both machine hardware and algorithms, for the verification of the continuum fields theories like Quantum Chromodynamics in four-dimensional Euclidean space-time is quite cumbersome due to the tremendously large number of de­ grees of freedom. Yet the motivation of theoretical physicists to exploit computers as tools for the simulation of complex systems such as gauge field theories has grown considerably during the past years. In fact, quite a few prominent colleagues of ours have even gone into machine building, both in industry and research institutions: more parallelism, and more de­ dicated computer architecture are their design goals to help them boost the Megaflop rate in their simulation processes. The workshop contained several interesting seminars with status reports on such supercomputer projects like the Italian APE (by E. Marinari), the IBM project GF-11 (by D. Weingarten), and the Danish projects MOSES and PALLAS (by H. Bohr).
QCD at Finite Temperature and Baryon Number Density (Review)
1(14)
F. Karsch
Deconfining Phase Transition and the Continuum Limit of Lattice Quantum Chromodynamics (Abstract)
15(2)
S. Meyer
Critical Behaviour in Baryonic Matter
17(20)
H. Satz
Monte Carlo Renormalization Group: A Review
37(30)
R. Gupta
Langevin Simulations of QCD, Including Fermions
67(8)
A.S. Kronfeld
The Look-Ahead Fermion Algorithm
75(14)
M. Grady
Dynamical Fermions Using Lanczos
89(6)
I.M. Barbour
QCD with Wilson Fermions on Intermediate Size Lattices
95(14)
I.O. Stamatescu
The Potential Between Static Quarks in SU(2) Lattice Gauge Theory with Dynamical Fermions
109(8)
E. Laermann
F. Langhammer
P.M. Zerwas
I. Schmitt
The SU(2) Chiral Model in an External Field: A Complex Stochastic Process on a Non-Abelian Group
117(8)
J. Ambjorn
S.-K. Yang
The t-Expansion and Lattice QCD
125(8)
D. Horn
Lattice Higgs Models (Review)
133(38)
J. Jersak
Relaxation and Correlations in Time in a Finite Volume
171(6)
J. Zinn-Justin
Topology in Lattice Gauge Theory (Abstract)
177(2)
G. Schierholz
Large N QCD: The Eguchi Kawai Approach
179(10)
O. Haan
Hadron Mass Calculation on a 243 x 48 Lattice
189(10)
Ph. de Forcrand
A. Koenig
K.H. Muetter
K. Schilling
R. Sommer
Calculation of Weak Matrix Elements: Some Technical Aspects
199(10)
C. Bernard
T. Draper
G. Hockney
A. Soni
The Chiral Limit in Lattice QCD
209(8)
A. Morel
QCD Sum Rules and Spontaneous Breakdown of Chiral Symmetry
217(10)
E. Katznelson
N.S. Craigie
S. Mahmood
Potentials
227(12)
C. Michael
Quenched Hadron Masses Using a 164 Lattice
239(6)
R.D. Kenway
A Cornucopia of Lattices
245(6)
G. Kilcup
The H Particle on the Lattice
251(6)
P.B. Mackenzie
H.B. Thacker
A New Method for Inverting Fermionic Matrix
257(10)
J. Wosiek
(Uses of) An Order Parameter for Lattice Gauge Theories with Matter Fields
267(12)
M. Marcu
The GF 11 Supercomputer (Abstract)
279(2)
J. Beetem
M. Denneau
D. Weingarten
Parallel Computing in Lattice Theory
281(14)
H. Bohr
The APE Computer and Lattice Gauge Theories
295(10)
E. Marinari
CRAY and QCD
305(8)
Ph. de Forcrand
Memory and Learning in a Class of Neural Network Models
313(18)
D.J. Wallace
Participants 331(2)
Index 333