Muutke küpsiste eelistusi

Learning and Intelligent Optimization: 9th International Conference, LION 9, Lille, France, January 12-15, 2015. Revised Selected Papers 2015 ed. [Pehme köide]

  • Formaat: Paperback / softback, 313 pages, kõrgus x laius: 235x155 mm, kaal: 4978 g, 92 Illustrations, black and white; XI, 313 p. 92 illus., 1 Paperback / softback
  • Sari: Theoretical Computer Science and General Issues 8994
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319190830
  • ISBN-13: 9783319190839
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 313 pages, kõrgus x laius: 235x155 mm, kaal: 4978 g, 92 Illustrations, black and white; XI, 313 p. 92 illus., 1 Paperback / softback
  • Sari: Theoretical Computer Science and General Issues 8994
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319190830
  • ISBN-13: 9783319190839

This book constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Learning and Optimization, LION 9, which was held in Lille, France, in January 2015.
The 31 contributions presented were carefully reviewed and selected for inclusion in this book. The papers address all fields between machine learning, artificial intelligence, mathematical programming and algorithms for hard optimization problems. Special focus is given to algorithm selection and configuration, learning, fitness landscape, applications, dynamic optimization, multi-objective, max-clique problems, bayesian optimization and global optimization, data mining, and - in a special session - also on dynamic optimization.

From Sequential Algorithm Selection to Parallel Portfolio Selection
1(16)
M. Lindauer
Holger H. Hoos
F. Hutter
An Algorithm Selection Benchmark of the Container Pre-marshalling Problem
17(6)
Kevin Tierney
Yuri Malitsky
ADVISER: A Web-Based Algorithm Portfolio Deviser
23(6)
Mustafa Misir
Stephanus Daniel Handoko
Hoong Chuin Lau
Identifying Best Hyperparameters for Deep Architectures Using Random Forests
29(14)
Zhen-Zhen Li
Zhuo-Yao Zhong
Lian-Wen Jin
Programming by Optimisation Meets Parameterised Algorithmics: A Case Study for Cluster Editing
43(16)
Sepp Hartung
Holger H. Hoos
OSCAR: Online Selection of Algorithm Portfolios with Case Study on Memetic Algorithms
59(15)
Mustafa Misir
Stephanus Daniel Handoko
Hoong Chuin Lau
Learning a Hidden Markov Model-Based Hyper-heuristic
74(15)
Willem Van Onsem
Bart Demoen
Patrick De Causmaecker
Comparison of Parameter Control Mechanisms in Multi-objective Differential Evolution
89(15)
Martin Drozdik
Hernan Aguirre
Youhei Akimoto
Kiyoshi Tanaka
Genetic Programming, Logic Design and Case-Based Reasoning for Obstacle Avoidance
104(15)
Andy Keane
Minimizing Total Tardiness on Identical Parallel Machines Using VNS with Learning Memory
119(6)
Eduardo Lalla-Ruiz
Stefan Voß
Dynamic Service Selection with Optimal Stopping and `Trivial Choice'
125(6)
Oliver Skroch
A Comparative Study on Self-Adaptive Differential Evolution Algorithms for Test Functions and a Real-World Problem
131(6)
Shota Eguchi
Yuki Matsugano
Hirokazu Sakaguchi
Satoshi Ono
Hisato Fukuda
Ryo Furukawa
Hiroshi Kawasaki
Empirical Analysis of Operators for Permutation Based Problems
137(14)
Pierre Desport
Matthieu Basseur
Adrien Goeffon
Frederic Lardeux
Frederic Saubion
Fitness Landscape of the Factoradic Representation on the Permutation Flowshop Scheduling Problem
151(14)
Marie-Eleonore Marmion
Olivier Regnier-Coudert
Exploring Non-neutral Landscapes with Neutrality-Based Local Search
165(5)
Matthieu Basseur
Adrien Goeffon
Hugo Traverson
A Selector Operator-Based Adaptive Large Neighborhood Search for the Covering Tour Problem
170(16)
Leticia Vargas
Nicolas Jozefowiez
Sandra Ulrich Ngueveu
Metaheuristics for the Two-Dimensional Container Pre-Marshalling Problem
186(16)
Alan Tus
Andrea Rendl
Gunther R. Raidl
Improving the State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection
202(16)
Lars Kotthoff
Pascal Kerschke
Holger H. Hoos
Heike Trautmann
A Biased Random-Key Genetic Algorithm for the Multiple Knapsack Assignment Problem
218(5)
Eduardo Lalla-Ruiz
Stefan Voß
DYNAMOP Applied to the Unit Commitment Problem
223(6)
Sophie Jacquin
Laetitia Jourdan
El-Ghazali Talbi
Scalarized Lower Upper Confidence Bound Algorithm
229(7)
Madalina M. Drugan
Generating Training Data for Learning Linear Composite Dispatching Rules for Scheduling
236(13)
Helga Ingimundardottir
Thomas Philip Runarsson
A Practical Case of the Multiobjective Knapsack Problem: Design, Modelling, Tests and Analysis
249(7)
Brahim Chabane
Matthieu Basseur
Jin-Kao Hao
A Bayesian Approach to Constrained Multi-objective Optimization
256(6)
Paul Feliot
Julien Bect
Emmanuel Vazquez
Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve
262(6)
Alexandre Quemy
Marc Schoenauer
Vincent Vidal
Johann Dreo
Pierre Saveant
Incremental MaxSAT Reasoning to Reduce Branches in a Branch-and-Bound Algorithm for MaxClique
268(7)
Chu-Min Li
Hua Jiang
Ru-Chu Xu
Reusing the Same Coloring in the Child Nodes of the Search Tree for the Maximum Clique Problem
275(6)
Alexey Nikolaev
Mikhail Batsyn
Pablo San Segundo
A Warped Kernel Improving Robustness in Bayesian Optimization Via Random Embeddings
281(6)
Mickael Binois
David Ginsbourger
Olivier Roustant
Making EGO and CMA-ES Complementary for Global Optimization
287(6)
Hossein Mohammadi
Rodolphe Le Riche
Eric Touboul
MO -- Mineclust: A Framework for Multi-objective Clustering
293(13)
Benjamin Fisset
Clarisse Dhaenens
Laetitia Jourdan
A Software Interface for Supporting the Application of Data Science to Optimisation
306(7)
Andrew J. Parkes
Ender Ozcan
Daniel Karapetyan
Author Index 313