Muutke küpsiste eelistusi

Learning Representation for Multi-View Data Analysis: Models and Applications 2019 ed. [Kõva köide]

  • Formaat: Hardback, 268 pages, kõrgus x laius: 235x155 mm, kaal: 588 g, 69 Illustrations, color; 7 Illustrations, black and white; X, 268 p. 76 illus., 69 illus. in color., 1 Hardback
  • Sari: Advanced Information and Knowledge Processing
  • Ilmumisaeg: 17-Dec-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030007332
  • ISBN-13: 9783030007331
  • Kõva köide
  • Hind: 122,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 144,49 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 268 pages, kõrgus x laius: 235x155 mm, kaal: 588 g, 69 Illustrations, color; 7 Illustrations, black and white; X, 268 p. 76 illus., 69 illus. in color., 1 Hardback
  • Sari: Advanced Information and Knowledge Processing
  • Ilmumisaeg: 17-Dec-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030007332
  • ISBN-13: 9783030007331

This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers’ understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal.

A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Arvustused

The book should be well received by advanced postgraduate students and data (especially big data) analysts. A background in statistics, mathematics, and computing is a prerequisite for reading. It is surely a must-have reference book for any scientific library. (Soubhik Chakraborty, Computing Reviews, May 07, 2019)

Introduction.- Multi-view Clustering with Complete Information.-
Multi-view Clustering with Partial Information.- Multi-view Outlier
Detection.- Multi-view Transformation Learning.- Zero-Shot Learning.- Missing
Modality Transfer Learning.- Deep Domain Adaptation.- Deep Domain
Generalization.