Why Group Theory? |
|
1 | (1) |
|
|
2 | (41) |
|
Groups and representations |
|
|
2 | (1) |
|
|
3 | (1) |
|
The regular representation |
|
|
4 | (1) |
|
Irreducible representations |
|
|
5 | (1) |
|
|
6 | (1) |
|
Application: parity in quantum mechanics |
|
|
7 | (1) |
|
|
8 | (1) |
|
Example: addition of integers |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (2) |
|
|
13 | (4) |
|
|
17 | (3) |
|
|
20 | (5) |
|
|
25 | (1) |
|
|
26 | (1) |
|
Example of tensor products |
|
|
27 | (2) |
|
|
29 | (4) |
|
|
33 | (1) |
|
Permutation group on n objects |
|
|
34 | (1) |
|
|
35 | (2) |
|
|
37 | (1) |
|
Example---our old friend S3 |
|
|
38 | (1) |
|
|
38 | (1) |
|
Young tableaux and representations of Sn |
|
|
38 | (5) |
|
|
43 | (13) |
|
|
43 | (2) |
|
|
45 | (2) |
|
|
47 | (1) |
|
The adjoint representation |
|
|
48 | (3) |
|
Simple algebras and groups |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (3) |
|
|
56 | (12) |
|
|
56 | (1) |
|
Raising and lowering operators |
|
|
57 | (3) |
|
|
60 | (3) |
|
|
63 | (1) |
|
|
64 | (4) |
|
|
68 | (11) |
|
|
68 | (1) |
|
|
69 | (1) |
|
The Wigner-Eckart theorem |
|
|
70 | (2) |
|
|
72 | (3) |
|
|
75 | (2) |
|
|
77 | (2) |
|
|
79 | (11) |
|
|
79 | (1) |
|
|
80 | (2) |
|
|
82 | (1) |
|
|
82 | (1) |
|
Symmetry of tensor products |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (2) |
|
Approximate isospin symmetry |
|
|
88 | (1) |
|
|
88 | (2) |
|
|
90 | (8) |
|
|
90 | (1) |
|
More on the adjoint representation |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
93 | (2) |
|
Watch carefully-this is important! |
|
|
95 | (3) |
|
|
98 | (5) |
|
|
98 | (2) |
|
Weights and roots of SU(3) |
|
|
100 | (3) |
|
|
103 | (22) |
|
|
103 | (2) |
|
|
105 | (3) |
|
|
108 | (3) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (2) |
|
|
117 | (1) |
|
Constructing the G2 algebra |
|
|
118 | (2) |
|
Another example: the algebra C3 |
|
|
120 | (1) |
|
|
121 | (2) |
|
|
123 | (2) |
|
|
125 | (13) |
|
Fundamental representations of SU(3) |
|
|
125 | (2) |
|
|
127 | (3) |
|
|
130 | (1) |
|
|
131 | (1) |
|
Examples of other representations |
|
|
132 | (6) |
|
|
138 | (28) |
|
|
138 | (1) |
|
Tensor components and wave functions |
|
|
139 | (1) |
|
Irreducible representations and symmetry |
|
|
140 | (1) |
|
|
141 | (1) |
|
Clebsch-Gordan decomposition |
|
|
141 | (2) |
|
|
143 | (1) |
|
Matrix elements and operators |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (6) |
|
Generalization of Wigner-Eckart |
|
|
152 | (2) |
|
|
154 | (2) |
|
Clebsch-Gordan coefficients from tensors |
|
|
156 | (1) |
|
|
157 | (3) |
|
|
160 | (6) |
|
Hypercharge and Strangeness |
|
|
166 | (12) |
|
|
166 | (3) |
|
The Gell-Mann Okubo formula |
|
|
169 | (4) |
|
|
173 | (1) |
|
|
174 | (4) |
|
|
178 | (9) |
|
|
178 | (2) |
|
Clebsch-Gordan decomposition |
|
|
180 | (3) |
|
|
183 | (4) |
|
|
187 | (11) |
|
Generalized Gell-Mann matrices |
|
|
187 | (3) |
|
|
190 | (3) |
|
|
193 | (1) |
|
|
194 | (1) |
|
SU(N) ⊗ SU(M) ∈ SU(N + M) |
|
|
195 | (3) |
|
|
198 | (7) |
|
Raising and lowering operators |
|
|
198 | (2) |
|
|
200 | (1) |
|
A more complicated example |
|
|
200 | (5) |
|
SU(6) and the Quark Model |
|
|
205 | (9) |
|
|
205 | (1) |
|
|
206 | (2) |
|
|
208 | (2) |
|
|
210 | (4) |
|
|
214 | (7) |
|
|
214 | (4) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
219 | (2) |
|
|
221 | (4) |
|
The nonrelativistic limit |
|
|
221 | (4) |
|
Unified Theories and SU(5) |
|
|
225 | (12) |
|
|
225 | (1) |
|
Parity violation, helicity and handedness |
|
|
226 | (2) |
|
Spontaneously broken symmetry |
|
|
228 | (1) |
|
Physics of spontaneous symmetry breaking |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (3) |
|
|
234 | (1) |
|
|
235 | (2) |
|
|
237 | (7) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (4) |
|
The Classification Theorem |
|
|
244 | (11) |
|
|
244 | (7) |
|
|
251 | (2) |
|
|
253 | (2) |
|
|
255 | (10) |
|
Fundamental weight of SO(2n + 1) |
|
|
255 | (4) |
|
|
259 | (2) |
|
|
261 | (1) |
|
Pseudo-real representations |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
262 | (3) |
|
|
265 | (5) |
|
Fundamental weights of SO(2n + 2) |
|
|
265 | (5) |
|
|
270 | (12) |
|
|
270 | (2) |
|
Γm and R as invariant tensors |
|
|
272 | (2) |
|
|
274 | (3) |
|
|
277 | (2) |
|
|
279 | (1) |
|
|
279 | (3) |
|
|
282 | (9) |
|
SO(10) and SU(4) x SU(2) x SU(2) |
|
|
282 | (3) |
|
Spontaneous breaking of SO(10) |
|
|
285 | (1) |
|
|
285 | (2) |
|
Breaking SO(10) → SU(3) x SU(2) x U(1) |
|
|
287 | (2) |
|
Breaking SO(10) → SU(3) x U(1) |
|
|
289 | (1) |
|
Lepton number as a fourth color |
|
|
289 | (2) |
|
|
291 | (6) |
|
|
291 | (2) |
|
|
293 | (4) |
|
|
297 | (5) |
|
|
297 | (2) |
|
|
299 | (3) |
|
|
302 | (9) |
|
Exceptional algebras and octonians |
|
|
302 | (2) |
|
|
304 | (4) |
|
|
308 | (1) |
|
SU(3) x SU(3) x SU(3) unification |
|
|
308 | (1) |
|
|
309 | (2) |
Epilogue |
|
311 | (1) |
Index |
|
312 | |