Muutke küpsiste eelistusi

Linear System Theory and Design: International Fourth Edition 4th Revised edition [Pehme köide]

(Professor Emeritus of Electrical and Computer Engineering, Stony Brook University, New York, New York, USA)
Striking a balance between theory and applications, Linear System Theory and Design, INternational Fourth Edition, uses simple and efficient methods to develop results and design procedures that students can readily employ. Ideal for advanced underrgraduate courses and first-year graduate
courses in linear systems and multivariable system design, it is also a helpful resource for practicing engineers.
Preface (International Edition) xi
Chapter 1 Introduction
1(5)
1.1 Introduction
1(1)
1.2 Overview
2(4)
1.2.1 A Brief History
4(2)
Chapter 2 Mathematical Descriptions of Systems
6(50)
2.1 Introduction
6(1)
2.2 Causality, Lumpedness, and Time Invariance
7(4)
2.2.1 Impulses
9(2)
2.3 Linear Time-Invariant Systems
11(8)
2.3.1 Multi-input Multi-output Case
18(1)
2.4 Linear Time-Varying Systems
19(2)
2.4.1 Linearization
20(1)
2.5 RLC Circuits---Comparisons of Various Descriptions
21(9)
2.6 Mechanical and Hydraulic Systems
30(8)
2.7 Proper Rational Transfer Functions
38(2)
2.8 Discrete-Time Linear Time-Invariant Systems
40(8)
2.9 Concluding Remarks
48(8)
Problems
49(7)
Chapter 3 Linear Algebra
56(47)
3.1 Introduction
56(1)
3.2 Basis, Representation, and Orthonormalization
57(5)
3.3 Linear Algebraic Equations
62(5)
3.4 Similarity Transformation
67(2)
3.5 Diagonal Form and Jordan Form
69(7)
3.6 Functions of a Square Matrix
76(9)
3.7 Lyapunov Equation
85(2)
3.8 Some Useful Formulas
87(1)
3.9 Quadratic Form and Positive Definiteness
88(4)
3.10 Singular Value Decomposition
92(2)
3.11 Norms of Matrices
94(9)
Problems
96(7)
Chapter 4 State-Space Solutions and Realizations
103(50)
4.1 Introduction
103(2)
4.2 General Solution of CT LTI State-Space Equations
105(7)
4.2.1 Discretization
108(2)
4.2.2 General Solution of DT LTI State-Space Equations
110(2)
4.3 Computer Computation of CT State-Space Equations
112(5)
4.3.1 Real-Time Processing
115(1)
4.3.2 Op-Amp Circuit Implementation
116(1)
4.4 Equivalent State-Space Equations
117(9)
4.4.1 Canonical Forms
122(2)
4.4.2 Magnitude Scaling in Op-Amp Circuits
124(2)
4.5 Realizations
126(9)
4.5.1 Multi-input Multi-output Case
130(5)
4.6 Solution of Linear Time-Varying (LTV) Equations
135(6)
4.6.1 Discrete-Time Case
140(1)
4.7 Equivalent Time-Varying Equations
141(4)
4.8 Time-Varying Realizations
145(8)
Problems
147(6)
Chapter 5 Stability
153(30)
5.1 Introduction
153(1)
5.2 Input--Output Stability of LTI Systems
153(9)
5.3 Discrete-Time Case
162(5)
5.4 Internal Stability
167(3)
5.4.1 Discrete-Time Case
169(1)
5.5 Lyapunov Theorem
170(6)
5.5.1 Discrete-Time Case
173(3)
5.6 Stability of LTV Systems
176(7)
Problems
179(4)
Chapter 6 Controllability and Observability
183(44)
6.1 Introduction
183(1)
6.2 Controllability
184(9)
6.2.1 Controllability Indices
190(3)
6.3 Observability
193(6)
6.3.1 Observability Indices
197(2)
6.4 Kalman Decomposition
199(7)
6.5 Conditions in Jordan-Form Equations
206(4)
6.6 Discrete-Time State-Space Equations
210(4)
6.6.1 Controllability to the Origin and Reachability
213(1)
6.7 Controllability after Sampling
214(3)
6.8 LTV State-Space Equations
217(10)
Problems
222(5)
Chapter 7 Minimal Realizations and Coprime Fractions
227(55)
7.1 Introduction
227(1)
7.2 Implications of Coprimeness
228(10)
7.2.1 Minimal Realizations
232(4)
7.2.2 Complete Characterization
236(2)
7.3 Computing Coprime Fractions
238(5)
7.3.1 QR Decomposition
242(1)
7.4 Balanced Realization
243(4)
7.5 Realizations from Markov Parameters
247(5)
7.6 Degree of Transfer Matrices
252(2)
7.7 Minimal Realizations---Matrix Case
254(2)
7.8 Matrix Polynomial Fractions
256(13)
7.8.1 Column and Row Reducedness
259(3)
7.8.2 Computing Matrix Coprime Fractions
262(7)
7.9 Realization from Matrix Coprime Fractions
269(6)
7.10 Realizations from Matrix Markov Parameters
275(2)
7.11 Concluding Remarks
277(5)
Problems
277(5)
Chapter 8 State Feedback and State Estimators
282(41)
8.1 Introduction
282(1)
8.2 State Feedback
283(10)
8.2.1 Solving Lyapunov Equation
290(3)
8.3 Regulation and Tracking
293(6)
8.3.1 Robust Tracking and Disturbance Rejection
295(4)
8.3.2 Stabilization
299(1)
8.4 State Estimator
299(6)
8.4.1 Reduced-Dimensional State Estimator
303(2)
8.5 Feedback from Estimated States
305(2)
8.6 State Feedback---MIMO Case
307(9)
8.6.1 Cyclic Design
308(3)
8.6.2 Lyapunov-Equation Method
311(1)
8.6.3 Controllable-Form Method
312(2)
8.6.4 Effect on Transfer Matrices
314(2)
8.7 State Estimators---MIMO Case
316(1)
8.8 Feedback from Estimated States---MIMO Case
317(6)
Problems
319(4)
Chapter 9 Pole Placement and Model Matching
323(56)
9.1 Introduction
323(2)
9.2 Preliminary---Matching Coefficients
325(3)
9.2.1 Compensator Equations---Classical Method
327(1)
9.3 Unity-Feedback Configuration---Pole Placement
328(11)
9.3.1 Regulation and Tracking
331(2)
9.3.2 Robust Tracking and Disturbance Rejection
333(4)
9.3.3 Embedding Internal Models
337(2)
9.4 Implementable Transfer Functions
339(11)
9.4.1 Model Matching---Two-Parameter Configuration
343(5)
9.4.2 Implementation of Two-Parameter Compensators
348(2)
9.5 MIMO Unity Feedback Systems
350(14)
9.5.1 Regulation and Tracking
360(2)
9.5.2 Robust Tracking and Disturbance Rejection
362(2)
9.6 MIMO Model Matching---Two-Parameter Configuration
364(10)
9.6.1 Decoupling
370(4)
9.7 Concluding Remarks
374(5)
Problems
375(4)
References 379(2)
Answers to Selected Problems 381(10)
Index 391
Chi-Tsong Chen is Professor Emeritus of Electrial and Computer Engineering at Stony Brook University, New York