Preamble |
|
xiii | |
Linear Systems I Basic Concepts |
|
1 | (220) |
|
|
3 | (82) |
|
1 State-Space Linear Systems |
|
|
5 | (7) |
|
1.1 State-Space Linear Systems |
|
|
5 | (2) |
|
|
7 | (4) |
|
|
11 | (1) |
|
|
12 | (19) |
|
2.1 State-Space Nonlinear Systems |
|
|
12 | (1) |
|
2.2 Local Linearization Around an Equilibrium Point |
|
|
12 | (3) |
|
2.3 Local Linearization Around a Trajectory |
|
|
15 | (1) |
|
2.4 Feedback Linearization |
|
|
16 | (6) |
|
|
22 | (5) |
|
|
27 | (4) |
|
3 Causality, Time Invariance, And Linearity |
|
|
31 | (12) |
|
3.1 Basic Properties of LTV/LTI Systems |
|
|
31 | (2) |
|
3.2 Characterization of All Outputs to a Given Input |
|
|
33 | (1) |
|
|
34 | (3) |
|
3.4 Laplace and Z Transforms (Review) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (2) |
|
|
42 | (1) |
|
4 Impulse Response And Transfer Function Of State-Space Systems |
|
|
43 | (13) |
|
4.1 Impulse Response and Transfer Function for LTI Systems |
|
|
43 | (1) |
|
|
44 | (1) |
|
4.3 Elementary Realization Theory |
|
|
45 | (4) |
|
4.4 Equivalent State-Space Systems |
|
|
49 | (1) |
|
4.5 LTI Systems in MATLAB® |
|
|
50 | (2) |
|
|
52 | (1) |
|
|
53 | (3) |
|
5 Solutions To LTV Systems |
|
|
56 | (8) |
|
5.1 Solution to Homogewous Linear Systems |
|
|
56 | (2) |
|
5.2 Solution to Nonhomogeneous Linear Systems |
|
|
58 | (1) |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
62 | (2) |
|
6 Solutions To LTI Systems |
|
|
64 | (12) |
|
|
64 | (1) |
|
6.2 Properties of the Matrix Exponential |
|
|
65 | (2) |
|
6.3 Computation of Matrix Exponentials Using Laplace Transforms |
|
|
67 | (1) |
|
6.4 The Importance of the Characteristic Polynomial |
|
|
68 | (1) |
|
|
69 | (1) |
|
6.6 Symbolic Computations in MATLAB® |
|
|
70 | (2) |
|
|
72 | (2) |
|
|
74 | (2) |
|
7 Solutions To LTI Systems: The Jordan Normal Form |
|
|
76 | (9) |
|
|
76 | (2) |
|
7.2 Computation of Matrix Powers using the Jordan Normal Form |
|
|
78 | (2) |
|
7.3 Computation of Matrix Exponentials using the Jordan Normal Form |
|
|
80 | (1) |
|
7.4 Eigenvalues with Multiplicity Larger than 1 |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
83 | (2) |
|
|
85 | (42) |
|
8 Internal Or LYAPUNOV Stability |
|
|
87 | (21) |
|
|
87 | (1) |
|
8.2 Vector and Matrix Norms (Review) |
|
|
88 | (2) |
|
8.3 Eigenvalue Conditions for Lyapunov Stability |
|
|
90 | (1) |
|
8.4 Positive-Definite Matrices (Review) |
|
|
91 | (1) |
|
8.5 Lyapunov Stability Theorem |
|
|
91 | (4) |
|
|
95 | (3) |
|
8.7 Stability of Locally Linearized Systems |
|
|
98 | (5) |
|
8.8 Stability Tests with MATLAB® |
|
|
103 | (1) |
|
|
103 | (2) |
|
|
105 | (3) |
|
|
108 | (12) |
|
9.1 Bounded-Input, Bounded-Output Stability |
|
|
108 | (1) |
|
9.2 Time Domain Conditions for BIBO Stability |
|
|
109 | (3) |
|
9.3 Frequency Domain Conditions for BIBO Stability |
|
|
112 | (1) |
|
9.4 BIBO versus Lyapunov Stability |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (3) |
|
|
118 | (2) |
|
10 Preview Of Optimal Control |
|
|
120 | (7) |
|
10.1 The Linear Quadratic Regulator Problem |
|
|
120 | (1) |
|
|
121 | (1) |
|
10.3 Feedback Invariants in Optimal Control |
|
|
122 | (1) |
|
10.4 Optimal State Feedback |
|
|
122 | (2) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (2) |
|
III Controllability And State Feedback |
|
|
127 | (50) |
|
11 Controllable And Reachable Subspaces |
|
|
129 | (19) |
|
11.1 Controllable and Reachable Subspaces |
|
|
129 | (1) |
|
11.2 Physical Examples and System Interconnections |
|
|
130 | (4) |
|
11.3 Fundamental Theorem of Linear Equations (Review) |
|
|
134 | (1) |
|
11.4 Reachability and Controllability Gramians |
|
|
135 | (2) |
|
11.5 Open-Loop Minimum-Energy Control |
|
|
137 | (1) |
|
11.6 Controllability Matrix (LTI) |
|
|
138 | (3) |
|
|
141 | (4) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (14) |
|
12.1 Controllable Systems |
|
|
148 | (2) |
|
12.2 Eigenvector Test for Controllability |
|
|
150 | (2) |
|
12.3 Lyapunov Test for Controllability |
|
|
152 | (3) |
|
12.4 Feedback Stabilization Based on the Lyapunov Test |
|
|
155 | (1) |
|
12.5 Eigenvalue Assignment |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
159 | (3) |
|
13 Controllable Decompositions |
|
|
162 | (6) |
|
13.1 Invariance with Respect to Similarity Transformations |
|
|
162 | (1) |
|
13.2 Controllable Decomposition |
|
|
163 | (2) |
|
13.3 Block Diagram Interpretation |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (9) |
|
|
168 | (1) |
|
14.2 Eigenvector Test for Stabilizability |
|
|
169 | (2) |
|
14.3 Popov-Belevitch-Hautus (PBH) Test for Stabilizability |
|
|
171 | (1) |
|
14.4 Lyapunov Test for Stabilizability |
|
|
171 | (2) |
|
14.5 Feedback Stabilization Based on the Lyapunov Test |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (3) |
|
IV Observability And Output Feedback |
|
|
177 | (44) |
|
|
179 | (19) |
|
15.1 Motivation: Output Feedback |
|
|
179 | (1) |
|
15.2 Unobservable Subspace |
|
|
180 | (2) |
|
15.3 Unconstructible Subspace |
|
|
182 | (1) |
|
|
182 | (2) |
|
15.5 Observability and Constructibility Gramians |
|
|
184 | (1) |
|
15.6 Gramian-Based Reconstruction |
|
|
185 | (2) |
|
|
187 | (1) |
|
15.8 Duality for LTI Systems |
|
|
188 | (2) |
|
|
190 | (3) |
|
|
193 | (1) |
|
|
193 | (2) |
|
|
195 | (3) |
|
|
198 | (12) |
|
16.1 Observable Decomposition |
|
|
198 | (2) |
|
16.2 Kalman Decomposition Theorem |
|
|
200 | (2) |
|
|
202 | (2) |
|
|
204 | (1) |
|
|
205 | (1) |
|
16.6 Eigenvalue Assignment by Output Injection |
|
|
206 | (1) |
|
16.7 Stabilization through Output Feedback |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
208 | (2) |
|
|
210 | (13) |
|
17.1 Minimal Realizations |
|
|
210 | (1) |
|
|
211 | (2) |
|
17.3 Similarity of Minimal Realizations |
|
|
213 | (2) |
|
17.4 Order of a Minimal SISO Realization |
|
|
215 | (2) |
|
|
217 | (1) |
|
|
217 | (2) |
|
|
219 | (2) |
Linear Systems II Advanced Material |
|
221 | (104) |
|
V Poles And Zeros Of Mimo Systems |
|
|
223 | (28) |
|
|
225 | (10) |
|
18.1 Informal Definition of Poles and Zeros |
|
|
225 | (1) |
|
18.2 Polynomial Matrices: Smith Form |
|
|
226 | (3) |
|
18.3 Rational Matrices: Smith-McMillan Form |
|
|
229 | (1) |
|
18.4 McMillan Degree, Poles, and Zeros |
|
|
230 | (2) |
|
18.5 Blocking Property of Transmission Zeros |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
233 | (2) |
|
19 State-Space Poles, Zeros, And Minimality |
|
|
235 | (9) |
|
19.1 Poles of Transfer Functions versus Eigenvalues of State-Space Realizations |
|
|
235 | (1) |
|
19.2 Transmission Zeros of Transfer Functions versus Invariant Zeros of State-Space Realizations |
|
|
236 | (3) |
|
19.3 Order of Minimal Realizations |
|
|
239 | (2) |
|
|
241 | (1) |
|
|
242 | (2) |
|
|
244 | (7) |
|
|
244 | (1) |
|
20.2 Existence of an Inverse |
|
|
245 | (1) |
|
20.3 Poles and Zeros of an Inverse |
|
|
246 | (2) |
|
20.4 Feedback Control of Invertible Stable Systems with Stable Inverses |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
250 | (1) |
|
VI LQR/LQG Optimal Control |
|
|
251 | (74) |
|
21 Linear Quadratic Regulation (LQR) |
|
|
253 | (7) |
|
21.1 Deterministic Linear Quadratic Regulation (LQR) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
21.4 Feedback Invariants in Optimal Control |
|
|
256 | (1) |
|
21.5 Optimal State Feedback |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
258 | (1) |
|
|
259 | (1) |
|
22 The Algebraic Riccati Equation (ARE) |
|
|
260 | (8) |
|
22.1 The Hamiltonian Matrix |
|
|
260 | (1) |
|
22.2 Domain of the Riccati Operator |
|
|
261 | (1) |
|
|
262 | (1) |
|
22.4 Stable Subspace of the Hamiltonian Matrix |
|
|
262 | (4) |
|
|
266 | (2) |
|
23 Frequency Domain And Asymptotic Properties Of LQR |
|
|
268 | (21) |
|
|
268 | (2) |
|
23.2 Frequency Domain Properties: Single-Input Case |
|
|
270 | (2) |
|
23.3 Loop Shaping Using LQR: Single-Input Case |
|
|
272 | (3) |
|
|
275 | (3) |
|
|
278 | (3) |
|
|
281 | (1) |
|
|
282 | (1) |
|
23.8 The Loop-Shaping Design Method (Review) |
|
|
283 | (5) |
|
|
288 | (1) |
|
|
289 | (16) |
|
24.1 Certainty Equivalence |
|
|
289 | (1) |
|
24.2 Deterministic Minimum-Energy Estimation (MEE) |
|
|
290 | (5) |
|
24.3 Stochastic Linear Quadratic Gaussian (LQG) Estimation |
|
|
295 | (1) |
|
24.4 LQR/LQG Output Feedback |
|
|
295 | (1) |
|
24.5 Loop Transfer Recovery (LTR) |
|
|
296 | (1) |
|
24.6 Optimal Set-Point Control |
|
|
297 | (5) |
|
24.7 LQR/LQG with MATLAB® |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
304 | (1) |
|
25 LQG/LQR And The Q Parameterization |
|
|
305 | (5) |
|
25.1 Q-Augmented LQG/LQR Controller |
|
|
305 | (1) |
|
|
306 | (3) |
|
|
309 | (1) |
|
|
309 | (1) |
|
|
310 | (15) |
|
26.1 Control Specifications for Q Design |
|
|
310 | (3) |
|
26.2 The Q Design Feasibility Problem |
|
|
313 | (1) |
|
26.3 Finite-Dimensional Optimization: Ritz Approximation |
|
|
314 | (2) |
|
26.4 Q Design Using MATLAB® and CVX |
|
|
316 | (5) |
|
|
321 | (2) |
|
|
323 | (2) |
Bibliography |
|
325 | (2) |
Index |
|
327 | |