Muutke küpsiste eelistusi

Liquid Chromatography: Fundamentals and Instrumentation 2nd edition [Pehme köide]

Edited by (Distinguished Professor, School of Natural Sciences, University of Tasmania, Hobart, Australia), Edited by (Department of Chemistry, ), Edited by , Edited by (Committee of the Ph.D. School in Nanoscience and Advanced Technologies, University of Verona, Verona, Italy)
  • Formaat: Paperback / softback, 808 pages, kõrgus x laius: 235x191 mm, kaal: 1650 g
  • Sari: Handbooks in Separation Science
  • Ilmumisaeg: 21-Jun-2017
  • Kirjastus: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128053933
  • ISBN-13: 9780128053935
Teised raamatud teemal:
  • Formaat: Paperback / softback, 808 pages, kõrgus x laius: 235x191 mm, kaal: 1650 g
  • Sari: Handbooks in Separation Science
  • Ilmumisaeg: 21-Jun-2017
  • Kirjastus: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128053933
  • ISBN-13: 9780128053935
Teised raamatud teemal:

Liquid Chromatography: Fundamentals and Instrumentation, Second Edition, is a single source of authoritative information on all aspects of the practice of modern liquid chromatography. It gives those working in both academia and industry the opportunity to learn, refresh, and deepen their understanding of new fundamentals and instrumentation techniques in the field.

In the years since the first edition was published, thousands of papers have been released on new achievements in liquid chromatography, including the development of new stationary phases, improvement of instrumentation, development of theory, and new applications in biomedicine, metabolomics, proteomics, foodomics, pharmaceuticals, and more.

This second edition addresses these new developments with updated chapters from the most expert researchers in the field.

  • Emphasizes the integration of chromatographic methods and sample preparation
  • Explains how liquid chromatography is used in different industrial sectors
  • Covers the most interesting and valuable applications in different fields, e.g., proteomic, metabolomics, foodomics, pollutants and contaminants, and drug analysis (forensic, toxicological, pharmaceutical, biomedical)
  • Includes references and tables with commonly used data to facilitate research, practical work, comparison of results, and decision-making

Arvustused

"The second edition of Liquid chromatography: fundamentals and instrumentation is a valuable resource for an analytical chemist. It contains in-depth explanations of separation mechanisms and detectors that will aid in method development and the optimization of selectivity and sensitivity required for good quantitative and qualitative determinations." --Analytical and Bioanalytical Chemistry

Muu info

A single source of authoritative information on modern liquid chromatography for advanced students and professionals in laboratory or managerial capacities
Handbooks in Separation Science Series ii
Contributors xix
Chapter 1 Milestones in the development of liquid chromatography
1(16)
Lloyd R. Snyder
John W. Dolan
1.1 Introduction
2(1)
1.1.1 Developments Before 1960
2(1)
1.1.2 HPLC at the Beginning
3(1)
1.2 HPLC Theory and Practice
3(2)
1.2.1 New HPLC Modes and Techniques
4(1)
1.2.2 Selection of Conditions for the Control of Selectivity
5(1)
1.3 Columns
5(3)
1.3.1 Particles and Column Packing
5(3)
1.3.2 Stationary Phases and Selectivity
8(1)
1.4 Equipment
8(2)
1.5 Detectors
10(7)
Apologies and Acknowledgments
11(1)
References
12(3)
Further Reading
15(2)
Chapter 2 Kinetic theories of liquid chromatography
17(22)
Attila Felinger
Alberto Cavazzini
2.1 Introduction
17(1)
2.2 Macroscopic Kinetic Theories
18(10)
2.2.1 Lumped Kinetic Model
19(3)
2.2.2 General Rate Model
22(4)
2.2.3 Lumped Pore Diffusion Model
26(1)
2.2.4 Equivalence of the Macroscopic Kinetic Models
26(1)
2.2.5 Kinetic Theory of Nonlinear Chromatography
27(1)
2.3 Microscopic Kinetic Theories
28(7)
2.3.1 Stochastic Model
28(3)
2.3.2 Giddings Plate Height Equation
31(2)
2.3.3 Monte Carlo Simulations of Nonlinear Chromatography
33(2)
2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models
35(4)
References
35(2)
Further Reading
37(2)
Chapter 3 Column technology in liquid chromatography
39(52)
Klaus K. Unger
Stefan Lamotte
Egidijus Machtejevas
3.1 Introduction
40(1)
3.2 Column Design and Hardware
41(5)
3.2.1 Column History in Brief
41(2)
3.2.2 Column Hardware
43(2)
3.2.3 Column Miniaturization
45(1)
3.3 Column Packing Materials and Stationary Phases
46(19)
3.3.1 Terminology
46(1)
3.3.2 Classification of LC Columns
47(1)
3.3.3 Packing Materials
48(9)
3.3.4 Major Synthesis Routes
57(8)
3.4 Column Systems and Operations
65(4)
3.4.1 Choice of Average Particle Size and Column Internal Diameter
65(2)
3.4.2 Equilibration Time
67(1)
3.4.3 Choice of Optimum-Flow Conditions
68(1)
3.4.4 Column Back Pressure
68(1)
3.4.5 Choice of Column Temperature
68(1)
3.4.6 Column Capacity and Loadability
68(1)
3.5 Chromatographic Column Testing and Evaluation
69(3)
3.5.1 Chromatographic Testing
69(3)
3.6 Column Maintenance and Troubleshooting
72(3)
3.6.1 Silica-Based Columns
72(1)
3.6.2 pH Stability
72(1)
3.6.3 Mechanical Stability
72(1)
3.6.4 Mobile Phases (Eluents)
73(1)
3.6.5 Regeneration of RP Packings
73(1)
3.6.6 Polymer-Based Columns
74(1)
3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb)
74(1)
3.6.8 Polymer-Based Ion-Exchangers
75(1)
3.6.9 Regeneration of Polymer Materials
75(1)
3.7 Today's Column Market--an Evaluation, Comparison, and Critical Appraisal
75(10)
3.7.1 Development During 2000--16
75(5)
3.7.2 A Column Comparison
80(5)
3.8 Conclusion: Where Do We Go Next? Science vs. Market
85(6)
References
85(6)
Chapter 4 Reversed-phase liquid chromatography
91(34)
Colin F. Poole
Nicole Lenca
4.1 Introduction
91(1)
4.2 General Features
92(7)
4.2.1 Solvent Strength
92(3)
4.2.2 Exothermodynamic Relationships
95(1)
4.2.3 Thermodynamic Considerations
96(3)
4.3 System Considerations
99(5)
4.3.1 Interphase Model
100(3)
4.3.2 Molecular Dynamics Simulations
103(1)
4.4 Linear Free Energy Relationships
104(14)
4.4.1 Solvation Parameter Model
104(10)
4.4.2 Hydrophobic-Subtraction Model
114(4)
4.5 Conclusions
118(7)
References
118(7)
Chapter 5 Secondary chemical equilibria in reversed-phase liquid chromatography
125(22)
Maria Celia Garcia-Alvarez-Coque
Jose R. Torres-Lapasio
Jose Antonio Navarro-Huerta
5.1 Introduction
126(1)
5.2 Acid-Base Equilibria
127(2)
5.2.1 Changes in Retention With pH
127(1)
5.2.2 Buffers and Measurement of pH
127(2)
5.3 Ion Interaction Chromatography
129(8)
5.3.1 Retention Mechanism
129(3)
5.3.2 Common Reagents and Operational Modes
132(1)
5.3.3 Separation of Inorganic Anions
133(1)
5.3.4 The Silanol Effect and Its Suppression With Amine Compounds
133(1)
5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives
134(1)
5.3.6 Use of ILs as Additives
135(1)
5.3.7 Measurement of the Enhancement of Column Performance Using Additives
136(1)
5.4 Micellar Liquid Chromatography
137(4)
5.4.1 An Additional Secondary Equilibrium in the Mobile Phase
137(1)
5.4.2 Hybrid Micellar Liquid Chromatography
138(3)
5.4.3 Microemulsion Liquid Chromatography
141(1)
5.5 Metal Complexation
141(2)
5.5.1 Determination of Metal Ions
141(2)
5.5.2 Determination of Organic Compounds
143(1)
5.6 Use of Redox Reactions
143(4)
References
144(3)
Chapter 6 Hydrophilic interaction liquid chromatography
147(24)
Alberto Cavazzini
Martina Catani
Attila Felinger
6.1 Introduction
147(2)
6.2 Principles of HILIC
149(5)
6.2.1 Thermodynamics of Adsorption
149(3)
6.2.2 Adsorption Kinetics
152(2)
6.3 Stationary and Mobile Phases Commonly Employed in HILIC
154(6)
6.3.1 Stationary Phases
154(5)
6.3.2 Mobile Phases
159(1)
6.4 Applications
160(11)
References
162(9)
Chapter 7 Hydrophobic interaction chromatography
171(20)
Candida T. Tomaz
7.1 Introduction
171(1)
7.2 Hydrophobic Interactions and Retention Mechanisms in HIC
172(3)
7.2.1 Hydrophobic Interactions
172(1)
7.2.2 Retention Mechanisms in HIC
173(2)
7.3 Parameters That Affect HIC
175(5)
7.3.1 Stationary Phase
175(3)
7.3.2 Mobile Phase
178(2)
7.3.3 Biomolecules Hydrophobicity
180(1)
7.4 Purification Strategies
180(1)
7.5 Experimental Considerations
181(1)
7.6 Recent Selected Applications
182(2)
7.7 Conclusions
184(7)
References
185(6)
Chapter 8 Liquid-solid chromatography
191(14)
Lloyd R. Snyder
John W. Dolan
8.1 Introduction
191(1)
8.2 Retention and Separation
192(5)
8.2.1 The Retention Process ("Mechanism")
193(1)
8.2.2 Solute and Solvent Localization
194(1)
8.2.3 Selectivity
195(2)
8.3 Method Development
197(4)
8.3.1 Thin-Layer Chromatography
197(2)
8.3.2 Selection of the Mobile Phase
199(2)
8.3.3 Example of Method Development
201(1)
8.4 Problems in the Use of Normal-Phase Chromatography
201(4)
References
203(1)
Further Reading
203(2)
Chapter 9 Ion chromatography
205(40)
Pavel N. Nesterenko
Brett Paull
9.1 Introduction
205(1)
9.1.1 Definitions
205(1)
9.1.2 History
206(1)
9.2 Basic Principles and Separation Modes
206(9)
9.2.1 Ion-Exchange Chromatography
206(2)
9.2.2 Ion-Exclusion Chromatography
208(1)
9.2.3 Chelation Ion Chromatography
209(1)
9.2.4 Zwitterionic Ion Chromatography
210(2)
9.2.5 Eluents for IC
212(3)
9.3 Instrumentation
215(20)
9.3.1 IC Columns
215(9)
9.3.2 Eluent Generators
224(6)
9.3.3 Detection in IC
230(5)
9.4 Applications
235(10)
9.4.1 Industrial Applications
236(2)
9.4.2 Environmental Applications
238(1)
References
239(5)
Further Reading
244(1)
Chapter 10 Size-exclusion chromatography
245(30)
Andre M. Striegel
10.1 Introduction
245(2)
10.2 Historical Background
247(1)
10.3 Retention in SEC
248(4)
10.3.1 A Size-Exclusion Process
248(1)
10.3.2 An Entropy-Controlled Process
249(2)
10.3.3 An Equilibrium Process
251(1)
10.4 Band Broadening in SEC
252(4)
10.4.1 Extra-Column Effects
255(1)
10.5 Resolution in SEC
256(1)
10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass
257(10)
10.6.1 Universal Calibration and Online Viscometry
258(4)
10.6.2 SLS Detection
262(5)
10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques
267(2)
10.8 Conclusions
269(6)
Acknowledgment and Disclaimer
270(1)
References
270(5)
Chapter 11 Interaction polymer chromatography
275(44)
Yefim Brun
Christopher J. Rasmussen
11.1 Introduction
275(3)
11.2 Fundamentals of IPC
278(18)
11.2.1 Retention Mechanisms
278(1)
11.2.2 Thermodynamics of Polymer Chromatography
279(2)
11.2.3 Modes of Polymer Chromatography
281(2)
11.2.4 Modeling of the Chromatographic Process
283(13)
11.3 Individual IPC Techniques
296(18)
11.3.1 Equipment and Chromatographic Media
296(1)
11.3.2 Nomenclature
297(1)
11.3.3 Isocratic Techniques
298(6)
11.3.4 Gradient Techniques
304(10)
11.4 Conclusion
314(5)
References
315(4)
Chapter 12 Affinity chromatography
319(24)
David S. Hage
Jeanethe A. Anguizola
Rong Li
Ryan Matsuda
Efthimia Papastavros
Erika Pfaunmiller
Matthew Sobansky
Xiwei Zheng
12.1 Introduction
319(1)
12.2 Basic Components of Affinity Chromatography
320(2)
12.3 Bioaffinity Chromatography
322(2)
12.4 Immunoaffinity Chromatography
324(2)
12.5 Dye-Ligand and Biomimetic Affinity Chromatography
326(2)
12.6 Immobilized Metal-Ion Affinity Chromatography
328(1)
12.7 Analytical Affinity Chromatography
329(2)
12.8 Miscellaneous Methods and Newer Developments
331(12)
Acknowledgment
333(1)
References
334(9)
Chapter 13 Solvent selection in liquid chromatography
343(32)
Guillermo Ramis-Ramos
Maria Celia Garcia-Alvarez-Coque
Jose Antonio Navarro-Huerta
13.1 Elution Strength
344(1)
13.2 Columns and Solvents in RPLC, NPLC, and HILIC
344(2)
13.3 Assessment of the Elution Strength
346(5)
13.3.1 The Hildebrand Solubility Parameter and Other Global Polarity Estimators
347(1)
13.3.2 Global Polarity for Solvent Mixtures
348(1)
13.3.3 Application Field of the Chromatographic Modes as Deduced From the Schoenmakers' Rule
349(2)
13.4 Isoeluotropic Mixtures
351(1)
13.5 Solvent-Selectivity Triangles
352(8)
13.5.1 The Snyder's Solvent-Selectivity Triangle
352(4)
13.5.2 Prediction of the Character of Solvent Mixtures
356(1)
13.5.3 A Solvatochromic Solvent-Selectivity Triangle
357(1)
13.5.4 Other Solvent Descriptors and Alternative Diagrams for Solvent Classification and Comparison
357(3)
13.6 Practical Guidelines for Optimization of Mobile-Phase Composition
360(8)
13.6.1 Selection of the Chromatographic Mode
360(1)
13.6.2 Description of the Retention Using the Modifier Content as a Factor
361(1)
13.6.3 Systematic Trial-and-Error Mobile-Phase Optimization for Isocratic Elution
362(2)
13.6.4 Systematic Trial-and-Error Mobile-Phase Optimization for Gradient Elution
364(2)
13.6.5 Computer-Assisted Interpretive Optimization
366(1)
13.6.6 Use of Combined Mobile Phases or Gradients to Achieve Full Resolution
367(1)
13.7 Additional Considerations for Solvent Selection
368(7)
Acknowledgments
370(1)
References
370(5)
Chapter 14 Method development in liquid chromatography
375(14)
John W. Dolan
Lloyd R. Snyder
14.1 Introduction
376(1)
14.2 Goals
376(1)
14.3 A Structured Approach to Method Development
377(4)
14.3.1 Column Plate Number, N: Term i of Eq. (14.1)
378(1)
14.3.2 Retention Factor, k: Term II of Eq. (14.1)
378(1)
14.3.3 Selectivity, a: Term III of Eq. (14.1)
378(2)
14.3.4 Gradient Elution
380(1)
14.4 Method Development in Practice
381(4)
14.4.1 Resolution-Modeling Software
381(1)
14.4.2 Priority of Column Screening
382(1)
14.4.3 HPLC vs. UHPLC
382(2)
14.4.4 A Systematic Plan
384(1)
14.5 Prevalidation
385(1)
14.6 Validation
386(1)
14.7 Documentation
387(1)
14.8 Summary
387(2)
References
388(1)
Further Reading
388(1)
Chapter 15 Theory and practice of gradient elution liquid chromatography
389(14)
John W. Dolan
Lloyd R. Snyder
15.1 Introduction
389(2)
15.2 The Effects of Experimental Conditions on Separation
391(7)
15.2.1 Gradient and Isocratic Separation Compared
392(2)
15.2.2 The Effect of Gradient Conditions
394(1)
15.2.3 The Effect of Column Conditions
394(3)
15.2.4 The Effect of Other Conditions on Selectivity
397(1)
15.3 Method Development
398(3)
15.4 Problems Associated With Gradient Elution
401(2)
References
401(1)
Further Reading
402(1)
Chapter 16 Comprehensive two-dimensional liquid chromatography
403(14)
Francesco Cacciola
Marina Russo
Luigi Mondello
Paola Dugo
16.1 Introduction
403(1)
16.2 Fundamentals
404(1)
16.3 Instrumental Set-Up and Data Analysis
405(3)
16.4 Novel Stationary Phases
408(1)
16.5 Conclusions and Future Perspectives
409(8)
References
409(8)
Chapter 17 General instrumentation in HPLC
417(14)
Margaret E. LaCourse
William R. LaCourse
17.1 Introduction
417(1)
17.2 Instrumental Set-Up
418(10)
17.2.1 Mobile Phase/Solvent Reservoir
418(1)
17.2.2 Solvent Delivery System
419(1)
17.2.3 Sample Introduction Device
420(1)
17.2.4 Column
421(1)
17.2.5 Post-column Apparatus
422(1)
17.2.6 Detector(s)
423(4)
17.2.7 Data Collection and Output
427(1)
17.2.8 Post-detection Eluent Processing
427(1)
17.2.9 Connective Tubing and Fittings
427(1)
17.3 Related HPLC Techniques
428(3)
Further Reading
428(3)
Chapter 18 Advanced spectroscopic detectors for identification and quantification: Mass spectrometry
431(32)
Sara Crotti
Ilena Isak
Pietro Traldi
18.1 Introduction
431(1)
18.2 Ionization Methods Suitable for LC Coupling
432(8)
18.2.1 Electrospray Ionization
433(2)
18.2.2 Atmospheric-Pressure Chemical Ionization
435(2)
18.2.3 Atmospheric Pressure Photonization
437(2)
18.2.4 EI in LC-MS
439(1)
18.3 How to Increase Specificity of MS Data
440(11)
18.3.1 Accurate Mass Measurements
441(1)
18.3.2 MS/MS
442(1)
18.3.3 Ion Mobility
443(8)
18.4 Micro- and Nano-LC-MS
451(3)
18.4.1 Classical Approach
452(1)
18.4.2 Microfluidic Devices
453(1)
18.5 Capillary Electrochromatography
454(9)
18.5.1 Interfacing With MS
456(1)
References
457(4)
Further Reading
461(2)
Chapter 19 Advanced IR and Raman detectors for identification and quantification
463(16)
Julia Kuligowski
Bernhard Lendl
Guillermo Quintas
19.1 Introduction
463(3)
19.2 Off-Line Hyphenation
466(2)
19.3 On-Line Hyphenation
468(7)
19.4 Conclusions
475(4)
References
475(4)
Chapter 20 Advanced spectroscopic detectors for identification and quantification: Nuclear magnetic resonance
479(36)
Nadine Bohni
Karine Ndjoko-Ioset
Arthur S. Edison
Jean-Luc Wolfender
20.1 Introduction
480(1)
20.2 Hyphenation of NMR with HPLC
481(1)
20.3 Advances in NMR Sensitivity
481(7)
20.3.1 Magnetic Field
482(1)
20.3.2 NMR Probe Design
483(1)
20.3.3 Smaller is Better
483(3)
20.3.4 Cryogenic Probes
486(1)
20.3.5 High-Temperature Superconducting Coils
486(1)
20.3.6 Sample Amounts Typically Analyzable According to the Probes and the Magnet Field
487(1)
20.3.7 Strategies for Obtaining NMR Information from a Given LC Peak
488(1)
20.4 Direct LC-NMR Hyphenation (On-flow/Stop-flow LC-NMR)
488(8)
20.4.1 Direct LC-NMR Hyphenation (On-flow/Stop-flow LC-NMR)
490(2)
20.4.2 Indirect LC-NMR Hyphenation (LC-SPE-NMR)
492(1)
20.4.3 Microfractionation and At-line MicroNMR Analysis
493(3)
20.4.4 Practical Considerations for NMR Detection on Microgram Amounts of Sample
496(1)
20.5 Integration with a Multiple Detection System (LC-NMR-MS)
496(2)
20.6 Quantification Capabilities
498(2)
20.6.1 General Considerations on Quantitative NMR
498(1)
20.6.2 Methods for Quantification in On-line and At-line LC-NMR
499(1)
20.7 Fields of Application
500(6)
20.7.1 Dereplication and Rapid De novo Identification of NPs in Complex Extracts
500(4)
20.7.2 Analysis of Unstable Compounds
504(1)
20.7.3 Metabolite Identification in Metabolomics
504(1)
20.7.4 Metabolite Identification in Body Fluids
505(1)
20.7.5 Identification of Pharmaceutical Impurities
505(1)
20.8 Conclusion
506(9)
Acknowledgments
508(1)
References
508(6)
Further Reading
514(1)
Chapter 21 Data analysis
515(18)
Alejandro C. Olivieri
Pablo L. Pisano
Arsenio Munoz de la Pena
Hector C. Goicoechea
21.1 Introduction
515(1)
21.2 Univariate Detection and Zeroth-Order Calibration
516(1)
21.3 Preprocessing: Baseline Correction, Peak Shift Alignment, Warping, and Normalization
517(2)
21.3.1 Baseline Correction
517(1)
21.3.2 Peak Alignment and Warping Methods
518(1)
21.3.3 Normalization
518(1)
21.4 Univariate Detection and First-Order Calibration
519(1)
21.5 Multivariate Detection and Second-Order Calibration
520(4)
21.5.1 Why Second-Order Calibration?
520(1)
21.5.2 Data and Algorithms
521(2)
21.5.3 Recent Applications
523(1)
21.6 Multivariate Detection and Third-Order Calibration
524(3)
21.6.1 Third-Order Chromatographic Data Generation
524(1)
21.6.2 Data and Algorithms
525(2)
21.7 Conclusions
527(6)
Acknowledgments
528(1)
References
528(5)
Chapter 22 Validation of liquid chromatographic methods
533(20)
Kimber L. Barnett
Brent Harrington
Timothy W. Graul
22.1 Discussion
533(14)
22.1.1 Traditional Method Validation
533(6)
22.1.2 Enhanced Approaches
539(8)
22.2 Conclusion
547(6)
References
548(5)
Chapter 23 Quantitative structure property (retention) relationships in liquid chromatography
553(20)
Roman Kaliszan
23.1 Introduction
553(1)
23.2 Methodology and Goals of QSRR Studies
554(5)
23.2.1 Structural Descriptors
555(1)
23.2.2 Retention Prediction
556(3)
23.3 Applications of QSRR in Proteomics
559(1)
23.4 Characterization of Stationary Phases
560(2)
23.5 QSRR and Assessment of Lipophilicity of Xenobiotics
562(3)
23.6 QSRR Analysis of Retention Data Determined on Immobilized-Biomacromolecule Stationary Phases
565(1)
23.7 Quantitative Retention-(Biological) Activity Relationships
566(1)
23.8 Chemometrically Processed Multivariate Chromatographic Data in Relation to Pharmacological Properties of Drugs and "Drug Candidates"
566(1)
23.9 Concluding Remarks
567(6)
Acknowledgment
568(1)
References
568(5)
Chapter 24 Modeling of preparative liquid chromatography
573(20)
Torgny Fornstedt
Patrik Forssen
Jorgen Samuelsson
24.1 Introduction
573(2)
24.2 Column Model
575(1)
24.2.1 The Equilibrium-Dispersive Model
575(1)
24.3 Adsorption Model
576(4)
24.3.1 Band Shape Dependence on Adsorption
576(2)
24.3.2 Adsorption Isotherms
578(1)
24.3.3 Determination of Adsorption Data
579(1)
24.4 Process Optimization of Preparative Chromatography
580(7)
24.4.1 Empirical Optimization
581(1)
24.4.2 Numerical Optimization
581(2)
24.4.3 Important Operational Conditions
583(4)
24.5 Case Example
587(6)
Acknowledgments
588(1)
References
588(5)
Chapter 25 Process concepts in preparative chromatography
593(26)
Malte Kaspereit
Andreas Seidel-Morgenstern
25.1 Introduction
593(1)
25.2 Classical Isocratic Discontinuous Elution Chromatography
594(3)
25.2.1 Mathematical Modeling and Typical Effects
595(2)
25.3 Other Discontinuous Operating Concepts
597(5)
25.3.1 Gradient Chromatography
597(3)
25.3.2 Recycling Techniques
600(2)
25.4 Continuous Concepts of Preparative Chromatography
602(10)
25.4.1 Multicolumn Countercurrent Concepts: SMB Chromatography
602(9)
25.4.2 Annular Chromatography
611(1)
25.5 Optimization and Concept Comparison
612(1)
25.6 Conclusions
613(6)
Acknowledgment
614(1)
References
614(5)
Chapter 26 Miniaturization and microfluidics
619(18)
Jakub Novotny
Frantisek Foret
Petr Smejkal
Mirek Macka
26.1 Introduction
619(4)
26.2 Microfluidic Systems for Separations
623(4)
26.2.1 Microfabrication Technologies
623(3)
26.2.2 Miniaturization of HPLC Systems
626(1)
26.3 Commercial Instrumentation
627(4)
26.3.1 Electrophoretic Systems
629(1)
26.3.2 HPLC Systems
630(1)
26.4 Conclusions
631(6)
Acknowledgments
633(1)
References
633(4)
Chapter 27 Nano-liquid chromatography
637(60)
Maria Asensio-Ramos
Chiara Fanali
Giovanni D'Orazio
Salvatore Fanali
27.1 Introduction
638(1)
27.2 Features of Microfluidic Analytical Techniques
639(2)
27.2.1 Improving Sensitivity Reducing the Chromatographic Dilution
639(1)
27.2.2 Efficiency and Extra Column Band Broadening
640(1)
27.3 SPS and Column Preparation
641(3)
27.3.1 SPs Used in Nano-LC
641(1)
27.3.2 Capillary Columns' Preparation
642(2)
27.4 Instrumentation
644(4)
27.4.1 Microfluidic Pump Systems
644(1)
27.4.2 Nano-volumes' Injection
645(1)
27.4.3 Detectors
646(1)
27.4.4 Hyphenation of Nano-LC With Mass Spectrometry
647(1)
27.5 Some Selected Applications
648(38)
27.5.1 Proteins and Peptides Analysis
648(7)
27.5.2 Food Analysis
655(10)
27.5.3 Environmental Analysis
665(6)
27.5.4 Pharmaceutical Analysis
671(8)
27.5.5 Clinical, Legal, and Forensic Analysis
679(3)
27.5.6 Miscellaneous
682(4)
27.6 Conclusions
686(11)
References
687(10)
Chapter 28 Capillary electrochromatography
697(22)
Susanne K. Wiedmer
Marja-Liisa Riekkola
28.1 Introduction
697(1)
28.2 Principles of Capillary Electrochromatography
698(2)
28.3 Instrumentation
700(12)
28.3.1 Injection
701(1)
28.3.2 Stationary Phases
702(6)
28.3.3 Detection
708(4)
28.4 Miniaturized Systems
712(3)
28.5 Applications
715(4)
References
716(3)
Chapter 29 Ultra-high performance liquid chromatography
719(52)
Lucie Novakova
Pavel Svoboda
Jakub Pavlik
29.1 Introduction
719(2)
29.2 Theoretical Aspects
721(10)
29.2.1 Chromatographic Performance
721(4)
29.2.2 Frictional Heating
725(3)
29.2.3 Method Translation From HPLC to UHPLC
728(3)
29.3 Instrumentation for UHPLC
731(13)
29.3.1 Instrumental Challenges
731(8)
29.3.2 Coupling of UHPLC with spectrometric detectors
739(1)
29.3.3 Coupling of UHPLC with mass spectrometers
740(4)
29.4 Stationary Phases for UHPLC
744(11)
29.4.1 Stationary Phases Based on Fully Porous Particles
744(6)
29.4.2 Stationary Phases Based on Core-Shell Particles
750(5)
29.5 Applications of UHPLC
755(7)
29.5.1 Pharmaceutical Analysis
756(1)
29.5.2 Bioanalysis
757(1)
29.5.3 Food and Feed Analysis
758(2)
29.5.4 Environmental Analysis
760(1)
29.5.5 Metabolomics
761(1)
29.6 Conclusions
762(9)
References
763(8)
Index 771
Salvatore Fanali is Director of Research at the Institute of Chemical Methodologies, Italian National Research Council (C.N.R.) in Monterotondo (Rome), Italy, and head of the Capillary Electromigration and Chromatographic Methods Unit at the same Institute. His research activity is mainly focused on separation science including the development of modern miniaturized techniques (electrodriven and liquid chromatography). He also studies hyphenation with mass spectrometry and development of new stationary phases. Separation methods developed are currently applied to food, pharmaceuticals, chiral environment, and biomedical analysis. He is Editor of the Journal of Chromatography A and a member of the advisory editorial board of seven international scientific journals. Fanali is the author of about 300 publications including some book chapters. He received several awards including the Liberti Medal” in Separation Science from the Italian Chemical Society. Paul Haddad is currently a Distinguished Professor of Chemistry and Australian Research Council Federation Fellow at the University of Tasmania, as well as Director of the Pfizer Analytical Research Centre. He has more than 500 publications in this field and has presented in excess of 450 papers at local and international scientific meetings. He is an editor of Journal of Chromatography A, a contributing editor for Trends in Analytical Chemistry, and was an editor of Analytica Chimica Acta for 6 years. He is currently a member of the editorial boards of 10 other journals of analytical chemistry or separation science.

He is the recipient of several national and international awards, including the ACS Award in Chromatography, the Marcel Golay Award, the AJP Martin Gold Medal awarded by the Chromatographic Society, the Royal Society of Chemistry Analytical Separation Methods Award, the RACI HG Smith and Analytical Division medals, and more. Professor Colin Poole is internationally known in the field of thin-layer chromatography and is an editor of the Journal of Chromatography and former editor of the Journal of Planar Chromatography Modern TLC. He has authored several books on chromatography, recent examples being The Essence of Chromatography published by Elsevier (2003), and Gas Chromatography published by Elsevier (2012). He is the author of approximately 400 research articles, many of which deal with thin-layer chromatography, and is co-chair of the biennial International Symposium on High-Performance Thin-Layer Chromatography”. Marja-Liisa Riekkola is a professor of Analytical Chemistry at Helsinki University, Helsinki, Finland. She is well recognized in the field of separation science. She serves as Editor of Journal of Chromatography A. Prof. Riekkola is one of the leaders in chromatography with a large number of publications.