Muutke küpsiste eelistusi

Loose Leaf Engineering Circuit Analysis 8th ed. [köitmata]

, (University of Canterbury Christchurch New Zealand),
  • Formaat: Loose-leaf, kõrgus x laius x paksus: 251x196x25 mm, kaal: 1451 g
  • Ilmumisaeg: 07-Aug-2012
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 0077753623
  • ISBN-13: 9780077753627
Teised raamatud teemal:
  • köitmata
  • Hind: 261,06 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Loose-leaf, kõrgus x laius x paksus: 251x196x25 mm, kaal: 1451 g
  • Ilmumisaeg: 07-Aug-2012
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 0077753623
  • ISBN-13: 9780077753627
Teised raamatud teemal:
The hallmark feature of this classic text is its focus on the student - it is written so that students may teach the science of circuit analysis to themselves. Terms are clearly defined when they are introduced, basic material appears toward the beginning of each chapter and is explained carefully and in detail, and numerical examples are used to introduce and suggest general results. Simple practice problems appear throughout each chapter, while more difficult problems appear at the end of chapters, following the order of presentation of text material. This introduction and resulting repetition provide an important boost to the learning process.

Hayt's rich pedagogy supports and encourages the student throughout by offering tips and warnings, using design to highlight key material, and providing lots of opportunities for hands-on learning. The thorough exposition of topics is delivered in an informal way that underscores the authors' conviction that circuit analysis can and should be fun.

Chapter 1 Introduction
1(8)
1.1 Overview of Text
2(2)
1.2 Relationship of Circuit Analysis to Engineering
4(1)
1.3 Analysis and Design
5(1)
1.4 Computer-Aided Analysis
6(1)
1.5 Successful Problem-Solving Strategies
7(2)
Reading Further
8(1)
Chapter 2 Basic Components And Electric Circuits
9(30)
2.1 Units and Scales
9(2)
2.2 Charge, Current, Voltage, and Power
11(6)
2.3 Voltage and Current Sources
17(5)
2.4 Ohm's Law
22(17)
Summary And Review
28(1)
Reading Further
29(1)
Exercises
29(10)
Chapter 3 Voltage And Current Laws
39(40)
3.1 Nodes, Paths, Loops, and Branches
39(1)
3.2 Kirchhoff's Current Law
40(2)
3.3 Kirchhoff's Voltage Law
42(4)
3.4 The Single-Loop Circuit
46(3)
3.5 The Single-Node-Pair Circuit
49(2)
3.6 Series and Parallel Connected Sources
51(4)
3.7 Resistors in Series and Parallel
55(6)
3.8 Voltage and Current Division
61(18)
Summary And Review
66(1)
Reading Further
67(1)
Exercises
67(12)
Chapter 4 Basic Nodal And Mesh Analysis
79(44)
4.1 Nodal Analysis
80(9)
4.2 The Supernode
89(3)
4.3 Mesh Analysis
92(6)
4.4 The Supermesh
98(3)
4.5 Nodal vs. Mesh Analysis: A Comparison
101(2)
4.6 Computer-Aided Circuit Analysis
103(20)
Summary And Review
107(2)
Reading Further
109(1)
Exercises
109(14)
Chapter 5 Handy Circuit Analysis Techniques
123(52)
5.1 Linearity and Superposition
123(10)
5.2 Source Transformations
133(8)
5.3 Thevenin and Norton Equivalent Circuits
141(11)
5.4 Maximum Power Transfer
152(2)
5.5 Delta-Wye Conversion
154(3)
5.6 Selecting an Approach: A Summary of Various Techniques
157(18)
Summary And Review
158(1)
Reading Further
159(1)
Exercises
159(16)
Chapter 6 The Operational Amplifier
175(42)
6.1 Background
175(1)
6.2 The Ideal Op Amp: A Cordial Introduction
176(8)
6.3 Cascaded Stages
184(4)
6.4 Circuits for Voltage and Current Sources
188(4)
6.5 Practical Considerations
192(11)
6.6 Comparators and the Instrumentation Amplifier
203(14)
Summary And Review
206(1)
Reading Further
207(1)
Exercises
208(9)
Chapter 7 Capacitors And Inductors
217(44)
7.1 The Capacitor
217(8)
7.2 The Inductor
225(10)
7.3 Inductance and Capacitance Combinations
235(3)
7.4 Consequences of Linearity
238(2)
7.5 Simple Op Amp Circuits with Capacitors
240(2)
7.6 Duality
242(3)
7.7 Modeling Capacitors and Inductors with PSpice
245(16)
Summary And Review
247(2)
Reading Further
249(1)
Exercises
249(12)
Chapter 8 Basic Rl And Rc Circuits
261(60)
8.1 The Source-Free RL Circuit
261(7)
8.2 Properties of the Exponential Response
268(4)
8.3 The Source-Free RC Circuit
272(3)
8.4 A More General Perspective
275(7)
8.5 The Unit-Step Function
282(4)
8.6 Driven RL Circuits
286(3)
8.7 Natural and Forced Response
289(6)
8.8 Driven RC Circuits
295(5)
8.9 Predicting the Response of Sequentially Switched Circuits
300(21)
Summary And Review
306(2)
Reading Further
308(1)
Exercises
309(12)
Chapter 9 The Rlc Circuit
321(50)
9.1 The Source-Free Parallel Circuit
321(5)
9.2 The Overdamped Parallel RLC Circuit
326(8)
9.3 Critical Damping
334(4)
9.4 The Underdamped Parallel RLC Circuit
338(7)
9.5 The Source-Free Series RLC Circuit
345(6)
9.6 The Complete Response of the RLC Circuit
351(8)
9.7 The Lossless LC Circuit
359(12)
Summary And Review
361(2)
Reading Further
363(1)
Exercises
363(8)
Chapter 10 Sinusoidal Steady-State Analysis
371(50)
10.1 Characteristics of Sinusoids
371(3)
10.2 Forced Response to Sinusoidal Functions
374(4)
10.3 The Complex Forcing Function
378(5)
10.4 The Phasor
383(6)
10.5 Impedance and Admittance
389(5)
10.6 Nodal and Mesh Analysis
394(3)
10.7 Superposition, Source Transformations and Thevenin's Theorem
397(9)
10.8 Phasor Diagrams
406(15)
Summary And Review
409(1)
Reading Further
410(1)
Exercises
410(11)
Chapter 11 Ac Circuit Power Analysis
421(36)
11.1 Instantaneous Power
422(2)
11.2 Average Power
424(9)
11.3 Effective Values of Current and Voltage
433(5)
11.4 Apparent Power and Power Factor
438(3)
11.5 Complex Power
441(16)
Summary And Review
447(2)
Reading Further
449(1)
Exercises
449(8)
Chapter 12 Polyphase Circuits
457(36)
12.1 Polyphase Systems
458(2)
12.2 Single-Phase Three-Wire Systems
460(4)
12.3 Three-Phase Y-Y Connection
464(6)
12.4 The Delta (Δ) Connection
470(6)
12.5 Power Measurement in Three-Phase Systems
476(17)
Summary And Review
484(2)
Reading Further
486(1)
Exercises
486(7)
Chapter 13 Magnetically Coupled Circuits
493(40)
13.1 Mutual Inductance
493(8)
13.2 Energy Considerations
501(4)
13.3 The Linear Transformer
505(7)
13.4 The Ideal Transformer
512(21)
Summary And Review
522(1)
Reading Further
523(1)
Exercises
523(10)
Chapter 14 Complex Frequency And The Laplace Transform
533(38)
14.1 Complex Frequency
533(4)
14.2 The Damped Sinusoidal Forcing Function
537(3)
14.3 Definition of the Laplace Transform
540(3)
14.4 Laplace Transforms of Simple Time Functions
543(3)
14.5 Inverse Transform Techniques
546(7)
14.6 Basic Theorems for the Laplace Transform
553(8)
14.7 The Initial-Value and Final-Value Theorems
561(10)
Summary And Review
564(1)
Reading Further
565(1)
Exercises
565(6)
Chapter 15 Circuit Analysis In The S-Domain
571(48)
15.1 Z(s) and Y(s)
571(7)
15.2 Nodal and Mesh Analysis in the s-Domain
578(7)
15.3 Additional Circuit Analysis Techniques
585(3)
15.4 Poles, Zeros, and Transfer Functions
588(1)
15.5 Convolution
589(9)
15.6 The Complex-Frequency Plane
598(4)
15.7 Natural Response and the s Plane
602(4)
15.8 A Technique for Synthesizing the Voltage Ratio H(s) = Vout/Vin
606(13)
Summary And Review
610(2)
Reading Further
612(1)
Exercises
612(7)
Chapter 16 Frequency Response
619(68)
16.1 Parallel Resonance
619(8)
16.2 Bandwidth and High-Q Circuits
627(6)
16.3 Series Resonance
633(4)
16.4 Other Resonant Forms
637(7)
16.5 Scaling
644(4)
16.6 Bode Diagrams
648(16)
16.7 Basic Filter Design
664(8)
16.8 Advanced Filter Design
672(15)
Summary And Review
677(2)
Reading Further
679(1)
Exercises
679(8)
Chapter 17 Two-Port Networks
687(46)
17.1 One-Port Networks
687(5)
17.2 Admittance Parameters
692(7)
17.3 Some Equivalent Networks
699(9)
17.4 Impedance Parameters
708(5)
17.5 Hybrid Parameters
713(3)
17.6 Transmission Parameters
716(17)
Summary And Review
720(1)
Reading Further
721(1)
Exercises
722(11)
Chapter 18 Fourier Circuit Analysis
733(58)
18.1 Trigonometric Form of the Fourier Series
733(10)
18.2 The Use of Symmetry
743(5)
18.3 Complete Response to Periodic Forcing Functions
748(2)
18.4 Complex Form of the Fourier Series
750(7)
18.5 Definition of the Fourier Transform
757(4)
18.6 Some Properties of the Fourier Transform
761(3)
18.7 Fourier Transform Pairs for Some Simple Time Functions
764(5)
18.8 The Fourier Transform of a General Periodic Time Function
769(1)
18.9 The System Function and Response in the Frequency Domain
770(7)
18.10 The Physical Significance of the System Function
777(14)
Summary And Review
782(1)
Reading Further
783(1)
Exercises
783(8)
Appendix 1 An Introduction to Network Topology 791(12)
Appendix 2 Solution of Simultaneous Equations 803(8)
Appendix 3 A Proof of Thevenin's Theorem 811(2)
Appendix 4 A Pspice® Tutorial 813(4)
Appendix 5 Complex Numbers 817(10)
Appendix 6 A Brief Matlab® Tutorial 827(6)
Appendix 7 Additional Laplace Transform Theorems 833(6)
Index 839