Muutke küpsiste eelistusi

Loose Leaf for Introduction to Flight 9th ed. [köitmata]

(Univ of Maryland College Park),
  • Formaat: Loose-leaf, 960 pages, kõrgus x laius x paksus: 231x183x30 mm, kaal: 1225 g
  • Ilmumisaeg: 02-Mar-2021
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 1260786153
  • ISBN-13: 9781260786156
Teised raamatud teemal:
  • Formaat: Loose-leaf, 960 pages, kõrgus x laius x paksus: 231x183x30 mm, kaal: 1225 g
  • Ilmumisaeg: 02-Mar-2021
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 1260786153
  • ISBN-13: 9781260786156
Teised raamatud teemal:
Anderson's Introduction to Flight, is designed for first or second-year engineering students and any reader looking for an introduction to aerospace engineering. It is written in an intentionally easy-to understand style. Readers are introduced to the basic areas of aerodynamics, flight dynamics, propulsion, and space flight (astronautics). In this edition, space flight content covers the expanding role of space vehicles within the field of aerospace engineering. Continuing the tradition of the previous edition, the 9th edition is intended not only to educate but also to motivate the reader to pursue the subject of aerospace engineering. In addition, new sections continue the unique tradition of including historical content discussing the origins of the technology.

If you want to understand the engineering behind how airplanes fly, how spacecrafts are launched into space, and how they are able to follow the right path to their destination, this book is for you.
About the Authors iii
Preface xii
Chapter 1 The First Aeronautical Engineers 1(52)
1.1 Introduction
1(2)
1.2 Very Early Developments
3(3)
1.3 Sir George Cayley (1773-1857)- The True Inventor of the Airplane
6(7)
1.4 The Interregnum-From 1853 to 1891
13(4)
1.5 Otto Lilienthal (1848-1896)-The Glider Man
17(3)
1.6 Percy Pilcher (1867-1899)-Extending the Glider Tradition
20(1)
1.7 Aeronautics Comes to America
21(5)
1.8 Wilbur (1867-1912) and Orville (1871-1948) Wright-Inventors of the First Practical Airplane
26(9)
1.9 The Aeronautical Triangle-Langley, the Wrights, and Glenn Curtiss
35(9)
1.10 The Problem of Propulsion
44(1)
1.11 Faster and Higher
45(3)
1.12 Summary and Review
48(3)
Bibliography
51(2)
Chapter 2 Fundamental Thoughts 53(57)
2.1 Fundamental Physical Quantities of a Flowing Gas
57(5)
2.1.1 Pressure
57(1)
2.1.2 Density
58(1)
2.1.3 Temperature
59(1)
2.1.4 Flow Velocity and Streamlines
60(2)
2.2 The Source of All Aerodynamic Forces
62(2)
2.3 Equation of State for a Perfect Gas
64(2)
2.4 Discussion of Units
66(5)
2.5 Specific Volume
71(11)
2.6 Anatomy of the Airplane
82(10)
2.7 Anatomy of a Space Vehicle
92(9)
2.7.1 Launch Vehicles
93(3)
2.7.2 Uncrewed Spacecraft
96(2)
2.7.3 Crewed Spacecraft
98(3)
2.8 Historical Note: The NACA and NASA
101(3)
2.9 Summary and Review
104(1)
Bibliography
105(1)
Problems
106(4)
Chapter 3 The Standard Atmosphere 110(24)
3.1 Definition of Altitude
112(1)
3.2 Hydrostatic Equation
113(2)
3.3 Relation Between Geopotential and Geometric Altitudes
115(1)
3.4 Definition of the Standard Atmosphere
116(9)
3.5 Pressure, Temperature, and Density Altitudes
125(3)
3.6 Historical Note: The Standard Atmosphere
128(2)
3.7 Summary and Review
130(2)
Bibliography
132(1)
Problems
132(2)
Chapter 4 Basic Aerodynamics 134(154)
4.1 Continuity Equation
138(1)
4.2 Incompressible and Compressible Flows
139(3)
4.3 Momentum Equation
142(4)
4.4 A Comment
146(7)
4.5 Elementary Thermodynamics
153(7)
4.6 Isentropic Flow
160(6)
4.7 Energy Equation
166(7)
4.8 Summary of Equations
173(1)
4.9 Speed of Sound
174(8)
4.10 Low-Speed Subsonic Wind Tunnels
182(6)
4.11 Measurement of Airspeed
188(22)
4.11.1 Incompressible Flow
191(6)
4.11.2 Subsonic Compressible Flow
197(8)
4.11.3 Supersonic Flow
205(5)
4.11.4 Summary
210(1)
4.12 Some Additional Considerations
210(4)
4.12.1 More about Compressible Flow
211(2)
4.12.2 More about Equivalent Airspeed
213(1)
4.13 Supersonic Wind Tunnels and Rocket Engines
214(12)
4.14 Discussion of Compressibility
226(1)
4.15 Introduction to Viscous Flow
227(9)
4.16 Results for a Laminar Boundary Layer
236(5)
4.17 Results for a Turbulent Boundary Layer
241(3)
4.18 Compressibility Effects on Skin Friction
244(3)
4.19 Transition
247(3)
4.20 Flow Separation
250(5)
4.21 Summary of Viscous Effects on Drag
255(2)
4.22 Historical Note: Bernoulli and Euler
257(1)
4.23 Historical Note: The Pitot Tube
258(3)
4.24 Historical Note: The First Wind Tunnels
261(6)
4.25 Historical Note: Osborne Reynolds and His Number
267(4)
4.26 Historical Note: Prandtl and the Development of the Boundary Layer Concept
271(3)
4.27 Summary and Review
274(4)
Bibliography
278(1)
Problems
279(9)
Chapter 5 Airfoils, Wings, and Other Aerodynamic Shapes 288(153)
5.1 Introduction
288(2)
5.2 Airfoil Nomenclature
290(4)
5.3 Lift, Drag, and Moment Coefficients
294(6)
5.4 Airfoil Data
300(15)
5.5 Infinite Versus Finite Wings
315(1)
5.6 Pressure Coefficient
316(6)
5.7 Obtaining Lift Coefficient from Cp
322(4)
5.8 Compressibility Correction for Lift Coefficient
326(1)
5.9 Critical Mach Number and Critical Pressure Coefficient
327(12)
5.10 Drag-Divergence Mach Number
339(8)
5.11 Wave Drag (At Supersonic Speeds)
347(10)
5.12 Summary of Airfoil Drag
357(2)
5.13 Finite Wings
359(4)
5.14 Calculation of Induced Drag
363(9)
5.15 Change in the Lift Slope
372(9)
5.16 Swept Wings
381(13)
5.17 Flaps-A Mechanism for High Lift
394(6)
5.18 Aerodynamics of Cylinders and Spheres
400(5)
5.19 How Lift is Produced-Some Alternative Explanations
405(10)
5.20 Historical Note: Airfoils and Wings
415(7)
5.20.1 The Wright Brothers
416(1)
5.20.2 British and U.S. Airfoils (1910-1920)
417(1)
5.20.3 1920-1930
418(1)
5.20.4 Early NACA Four-Digit Airfoils
418(1)
5.20.5 Later NACA Airfoils
419(1)
5.20.6 Modern Airfoil Work
419(1)
5.20.7 Finite Wings
420(2)
5.21 Historical Note: Ernst Mach and his Number
422(4)
5.22 Historical Note: The First Manned Supersonic Flight
426(4)
5.23 Historical Note: The X-15-First Manned Hypersonic Airplane and Stepping-Stone to the Space Shuttle
430(2)
5.24 Summary and Review
432(2)
Bibliography
434(1)
Problems
435(6)
Chapter 6 Elements of Airplane Performance 441(157)
6.1 Introduction: The Drag Polar
441(7)
6.2 Equations of Motion
448(2)
6.3 Thrust Required for Level, Unaccelerated Flight
450(8)
6.4 Thrust Available and Maximum Velocity
458(3)
6.5 Power Required for Level, Unaccelerated Flight
461(5)
6.6 Power Available and Maximum Velocity
466(4)
6.6.1 Reciprocating Engine-Propeller Combination
466(2)
6.6.2 Jet Engine
468(2)
6.7 Altitude Effects on Power Required and Available
470(9)
6.8 Rate of Climb
479(10)
6.9 Gliding Flight
489(4)
6.10 Absolute and Service Ceilings
493(6)
6.11 Time to Climb
499(1)
6.12 Range and Endurance: Propeller-Driven Airplane
500(8)
6.12.1 Physical Considerations
501(1)
6.12.2 Quantitative Formulation
502(2)
6.12.3 Breguet Formulas (Propeller-Driven Airplane)
504(4)
6.13 Range and Endurance: Jet Airplane
508(6)
6.13.1 Physical Considerations
509(1)
6.13.2 Quantitative Formulation
510(4)
6.14 Relations Between CDs and CD1
514(8)
6.15 Takeoff Performance
522(6)
6.16 Landing Performance
528(3)
6.17 Turning Flight and the V-n Diagram
531(9)
6.18 Accelerated Rate of Climb (Energy Method)
540(7)
6.19 Special Considerations for Supersonic Airplanes
547(3)
6.20 Uninhabited Aerial Vehicles (UAVs)
550(10)
6.21 Micro Air Vehicles
560(3)
6.22 Quest for Aerodynamic Efficiency
563(8)
6.22.1 Measure of Aerodynamic Efficiency
563(1)
6.22.2 What Dictates the Value of LID?
564(1)
6.22.3 Sources of Aerodynamic Drag; Drag Reduction
564(5)
6.22.4 Some Innovative Aircraft Configurations for High LID
569(2)
6.23 A Comment
571(1)
6.24 Historical Note: Drag Reduction-The NACA Cowling and the Fillet
572(4)
6.25 Historical Note: Early Predictions of Airplane Performance
576(2)
6.26 Historical Note: Breguet and the Range Formula
578(1)
6.27 Historical Note: Aircraft Design-Evolution and Revolution
579(5)
6.28 Sleeker and Faster Airplanes: The NACA's Drag Cleanup Studies in the Full Scale Tunnel
584(5)
6.29 Summary and Review
589(3)
Bibliography
592(1)
Problems
593(5)
Chapter 7 Principles of Stability and Control 598(61)
7.1 Introduction
598(6)
7.2 Definition of Stability and Control
604(5)
7.2.1 Static Stability
605(1)
7.2.2 Dynamic Stability
606(2)
7.2.3 Control
608(1)
7.2.4 Partial Derivative
608(1)
7.3 Moments on the Airplane
609(1)
7.4 Absolute Angle of Attack
610(2)
7.5 Criteria for Longitudinal Static Stability
612(5)
7.6 Quantitative Discussion: Contribution of the Wing to MCG
617(4)
7.7 Contribution of the Tail to Mcg
621(3)
7.8 Total Pitching Moment About the Center of Gravity
624(2)
7.9 Equations for Longitudinal Static Stability
626(2)
7.10 Neutral Point
628(1)
7.11 Static Margin
629(4)
7.12 Concept of Static Longitudinal Control
633(5)
7.13 Calculation of Elevator Angle to Trim
638(2)
7.14 Stick-Fixed Versus Stick-Free Static Stability
640(1)
7.15 Elevator Hinge Moment
641(2)
7.16 Stick-Free Longitudinal Static Stability
643(4)
7.17 Directional Static Stability
647(1)
7.18 Lateral Static Stability
648(2)
7.19 A Comment
650(1)
7.20 Historical Note: The Wright Brothers Versus the European Philosophy of Stability and Control
651(1)
7.21 Historical Note: The Development of Flight Controls
652(2)
7.22 Historical Note: The "Tuck-Under" Problem
654(1)
7.23 Summary and Review
655(2)
Bibliography
657(1)
Problems
657(2)
Chapter 8 Space Flight (Astronautics) 659(87)
8.1 Introduction
659(4)
8.2 The Space Environment
663(8)
8.2.1 Distances and Velocities
663(2)
8.2.2 Temperature and Heat Transfer in Space
665(4)
8.2.3 Pressure, Particles, and Radiation
669(2)
8.3 Lagrange's Equation
671(3)
8.4 Orbit Equation
674(6)
8.4.1 Force and Energy
675(1)
8.4.2 Equation of Motion
676(4)
8.5 Kepler's Laws and Elliptical Orbits
680(6)
8.5.1 Kepler's First Law
680(3)
8.5.2 Kepler's Second Law
683(1)
8.5.3 Kepler's Third Law
684(2)
8.6 Orbital Energy and the Vis-Viva Equation
686(12)
8.6.1 Orbital Shapes
686(2)
8.6.2 Orbital Energy
688(2)
8.6.3 Orbital Velocities
690(5)
8.6.4 The Vis-Viva Equation
695(3)
8.7 Orbital Maneuvering
698(10)
8.7.1 Coplanar Orbital Maneuvers and the Hohmann Transfer
699(6)
8.7.2 Plane Change Maneuver
705(3)
8.8 Interplanetary Trajectories
708(11)
8.8.1 Hyperbolic Trajectories
708(2)
8.8.2 Sphere of Influence
710(1)
8.8.3 Heliocentric Trajectories
711(1)
8.8.4 Method of Patched Conics
712(1)
8.8.5 Gravity-Assist Trajectories
713(2)
8.8.6 An Application: The Voyager Spacecraft-Their Design, Flight Trajectories, and Historical Significance
715(4)
8.9 Introduction to Atmospheric Entry
719(7)
8.9.1 Exponential Atmosphere
721(1)
8.9.2 General Equations of Motion for Atmospheric Entry
722(4)
8.10 Historical Note: Kepler
726(1)
8.11 Historical Note: Newton and the Law of Gravitation
727(2)
8.12 Historical Note: Lagrange
729(1)
8.13 Historical Note: Unmanned Space Flight
730(4)
8.14 Historical Note: Human Space Flight
734(6)
8.15 Summary and Review
740(3)
Bibliography
743(1)
Problems
743(3)
Chapter 9 Propulsion 746(89)
9.1 Introduction
746(3)
9.2 Propeller
749(7)
9.3 Reciprocating Engine
756(11)
9.4 Jet Propulsion-The Thrust Equation
767(3)
9.5 Turbojet Engine
770(11)
9.5.1 Thrust Buildup for a Turbojet Engine
775(6)
9.6 Turbofan Engine
781(2)
9.7 Ramjet Engine
783(4)
9.8 Rocket Engine
787(7)
9.9 Rocket Propellants-Some Considerations
794(6)
9.9.1 Liquid Propellants
794(3)
9.9.2 Solid Propellants
797(2)
9.9.3 A Comment
799(1)
9.10 Rocket Equation
800(3)
9.11 Rocket Staging
803(6)
9.11.1 Comparison of Single-Stage and Two-Stage Vehicle
804(2)
9.11.2 Mass Ratios
806(2)
9.11.3 Multistage Vehicles
808(1)
9.12 Electric Propulsion
809(3)
9.12.1 Electron-Ion Thruster
810(1)
9.12.2 Magnetoplasmadynamic Thruster
811(1)
9.12.3 Arc-Jet Thruster
811(1)
9.12.4 A Comment
812(1)
9.13 Historical Note: Early Propeller Development
812(3)
9.14 Historical Note: Early Development of the Internal Combustion Engine for Aviation
815(3)
9.15 Historical Note: Inventors of Early Jet Engines
818(2)
9.16 Historical Note: Early History of Rocket Engines
820(5)
9.17 Historical Note: Development of the Saturn V and N-1 Boosters
825(3)
9.18 Summary and Review
828(2)
Bibliography
830(1)
Problems
831(4)
Chapter 10 Hypersonic Vehicles 835(32)
10.1 Introduction
835(4)
10.2 Physical Aspects of Hypersonic Flow
839(8)
10.2.1 Thin Shock Layers
839(1)
10.2.2 Entropy Layer
840(1)
10.2.3 Viscous Interaction
841(1)
10.2.4 High-Temperature Effects
842(1)
10.2.5 Low-Density Flow
843(4)
10.2.6 Recapitulation
847(1)
10.3 Newtonian Law for Hypersonic Flow
847(6)
10.4 Some Comments About Hypersonic Airplanes
853(11)
10.5 Summary and Review
864(1)
Bibliography
865(1)
Problems
865(2)
Appendix A: Standard Atmosphere, SI Units 867(10)
Appendix B: Standard Atmosphere, English Engineering Units 877(8)
Appendix C: Symbols and Conversion Factors 885(1)
Appendix D: Airfoil Data 886(29)
Answer Key 915(4)
Index 919