Muutke küpsiste eelistusi

Loose Leaf for Numerical Methods for Engineers 8th ed. [köitmata]

, (Tufts University)
  • Formaat: Loose-leaf, 1008 pages, kõrgus x laius x paksus: 231x206x33 mm, kaal: 1361 g, Illustrations
  • Ilmumisaeg: 03-Mar-2020
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 1260484580
  • ISBN-13: 9781260484588
Teised raamatud teemal:
  • Formaat: Loose-leaf, 1008 pages, kõrgus x laius x paksus: 231x206x33 mm, kaal: 1361 g, Illustrations
  • Ilmumisaeg: 03-Mar-2020
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 1260484580
  • ISBN-13: 9781260484588
Teised raamatud teemal:
The eighth edition of Chapra and Canale's Numerical Methods for Engineers retains the instructional techniques that have made the text so successful. The book covers the standard numerical methods employed by both students and practicing engineers. Although relevant theory is covered, the primary emphasis is on how the methods are applied for engineering problem solving. Each part of the book includes a chapter devoted to case studies from the major engineering disciplines. Numerous new or revised end-of chapter problems and case studies are drawn from actual engineering practice. This edition also includes several new topics including a new formulation for cubic splines, Monte Carlo integration, and supplementary material on hyperbolic partial differential equations.
About The Authors iv
Preface xv
PART ONE MODELING, COMPUTERS, AND ERROR ANALYSIS
2(115)
PT1.1 Motivation
2(2)
PT1.2 Mathematical Background
4(3)
PT1.3 Orientation
7(4)
Chapter 1 Mathematical Modeling and Engineering Problem Solving
11(17)
1.1 A Simple Mathematical Model
11(7)
1.2 Conservation Laws and Engineering
18(10)
Problems
21(7)
Chapter 2 Programming and Software
28(29)
2.1 Packages and Programming
28(1)
2.2 Structured Programming
29(9)
2.3 Modular Programming
38(2)
2.4 Excel
40(4)
2.5 MATLAB
44(4)
2.6 Mathcad
48(1)
2.7 Other Languages and Libraries
49(8)
Problems
50(7)
Chapter 3 Approximations and Round-Off Errors
57(26)
3.1 Significant Figures
58(2)
3.2 Accuracy and Precision
60(1)
3.3 Error Definitions
61(6)
3.4 Round-Off Errors
67(16)
Problems
81(2)
Chapter 4 Truncation Errors and the Taylor Series
83(34)
4.1 The Taylor Series
83(16)
4.2 Error Propagation
99(5)
4.3 Total Numerical Error
104(4)
4.4 Blunders, Formulation Errors, and Data Uncertainty
108(4)
Problems
110(2)
Epilogue: PART ONE
112(1)
PT1.4 Trade-Offs
112(3)
PT1.5 Important Relationships and Formulas
115(1)
PT1.6 Advanced Methods and Additional References
115(2)
PART TWO ROOTS OF EQUATIONS
117(118)
PT2.1 Motivation
117(2)
PT2.2 Mathematical Background
119(1)
PT2.3 Orientation
120(4)
Chapter 5 Bracketing Methods
124(22)
5.1 Graphical Methods
124(4)
5.2 The Bisection Method
128(8)
5.3 The False-Position Method
136(6)
5.4 Incremental Searches and Determining Initial Guesses
142(4)
Problems
143(3)
Chapter 6 Open Methods
146(31)
6.1 Simple Fixed-Point Iteration
147(5)
6.2 The Newton-Raphson Method
152(6)
6.3 The Secant Method
158(5)
6.4 Brent's Method
163(4)
6.5 Multiple Roots
167(3)
6.6 Systems of Nonlinear Equations
170(7)
Problems
174(3)
Chapter 7 Roots of Polynomials
177(29)
7.1 Polynomials in Engineering and Science
177(3)
7.2 Computing with Polynomials
180(3)
7.3 Conventional Methods
183(1)
7.4 Muller's Method
184(4)
7.5 Bairstow's Method
188(5)
7.6 Other Methods
193(1)
7.7 Root Location with Software Packages
193(13)
Problems
204(2)
Chapter 8 Case Studies: Roots of Equations
206(29)
8.1 Ideal and Nonideal Gas Laws (Chemical/Bio Engineering)
206(3)
8.2 Greenhouse Gases and Rainwater (Civil/Environmental Engineering)
209(2)
8.3 Design of an Electric Circuit (Electrical Engineering)
211(3)
8.4 Pipe Friction (Mechanical/Aerospace Engineering)
214(17)
Problems
218(13)
Epilogue: PART TWO
231(1)
PT2.4 Trade-Offs
231(1)
PT2.5 Important Relationships and Formulas
232(1)
PT2.6 Advanced Methods and Additional References
232(3)
PART THREE LINEAR ALGEBRAIC EQUATIONS
235(115)
PT3.1 Motivation
235(2)
PT3.2 Mathematical Background
237(8)
PT3.3 Orientation
245(4)
Chapter 9 Gauss Elimination
249(34)
9.1 Solving Small Numbers of Equations
249(7)
9.2 Naive Gauss Elimination
256(6)
9.3 Pitfalls of Elimination Methods
262(6)
9.4 Techniques for Improving Solutions
268(7)
9.5 Complex Systems
275(1)
9.6 Nonlinear Systems of Equations
275(2)
9.7 Gauss-Jordan
277(2)
9.8 Summary
279(4)
Problems
280(3)
Chapter 10 LU Decomposition and Matrix Inversion
283(22)
10.1 LU Decomposition
283(9)
10.2 The Matrix Inverse
292(4)
10.3 Error Analysis and System Condition
296(9)
Problems
302(3)
Chapter 11 Special Matrices and Gauss-Seidel
305(20)
11.1 Special Matrices
305(4)
11.2 Gauss-Seidel
309(7)
11.3 Linear Algebraic Equations with Software Packages
316(9)
Problems
321(4)
Chapter 12 Case Studies: Linear Algebraic Equations
325(25)
12.1 Steady-State Analysis of a System of Reactors (Chemical/Bio Engineering)
325(3)
12.2 Analysis of a Statically Determinate Truss (Civil/Environmental Engineering)
328(4)
12.3 Currents and Voltages in Resistor Circuits (Electrical Engineering)
332(2)
12.4 Spring-Mass Systems (Mechanical/Aerospace Engineering)
334(13)
Problems
337(10)
Epilogue: PART THREE
347(1)
PT3.4 Trade-Offs
347(1)
PT3.5 Important Relationships and Formulas
348(1)
PT3.6 Advanced Methods and Additional References
348(2)
PART FOUR OPTIMIZATION
350(97)
PT4.1 Motivation
350(5)
PT4.2 Mathematical Background
355(2)
PT4.3 Orientation
357(3)
Chapter 13 One-Dimensional Unconstrained Optimization
360(15)
13.1 Golden-Section Search
361(7)
13.2 Parabolic Interpolation
368(2)
13.3 Newton's Method
370(1)
13.4 Brent's Method
371(4)
Problems
373(2)
Chapter 14 Multidimensional Unconstrained Optimization
375(20)
14.1 Direct Methods
376(4)
14.2 Gradient Methods
380(15)
Problems
393(2)
Chapter 15 Constrained Optimization
395(26)
15.1 Linear Programming
395(11)
15.2 Nonlinear Constrained Optimization
406(1)
15.3 Optimization with Software Packages
407(14)
Problems
418(3)
Chapter 16 Case Studies: Optimization
421(26)
16.1 Least-Cost Design of a Tank (Chemical/Bio Engineering)
421(5)
16.2 Least-Cost Treatment of Wastewater (Civil/Environmental Engineering)
426(4)
16.3 Maximum Power Transfer for a Circuit (Electrical Engineering)
430(4)
16.4 Equilibrium and Minimum Potential Energy (Mechanical/Aerospace Engineering)
434(11)
Problems
436(9)
Epilogue: PART FOUR
445(1)
PT4.4 Trade-Offs
445(1)
PT4.5 Additional References
446(1)
PART FIVE CURVE FITTING
447(149)
PT5.1 Motivation
447(2)
PT5.2 Mathematical Background
449(9)
PT5.3 Orientation
458(4)
Chapter 17 Least-Squares Regression
462(34)
17.1 Linear Regression
462(16)
17.2 Polynomial Regression
478(4)
17.3 Multiple Linear Regression
482(3)
17.4 General Linear Least Squares
485(4)
17.5 Nonlinear Regression
489(7)
Problems
493(3)
Chapter 18 Interpolation
496(39)
18.1 Newton's Divided-Difference Interpolating Polynomials
497(11)
18.2 Lagrange Interpolating Polynomials
508(5)
18.3 Coefficients of an Interpolating Polynomial
513(1)
18.4 Inverse Interpolation
513(1)
18.5 Additional Comments
514(3)
18.6 Spline Interpolation
517(12)
18.7 Multidimensional Interpolation
529(6)
Problems
531(4)
Chapter 19 Fourier Approximation
535(37)
19.1 Curve Fitting with Sinusoidal Functions
536(6)
19.2 Continuous Fourier Series
542(3)
19.3 Frequency and Time Domains
545(4)
19.4 Fourier Integral and Transform
549(2)
19.5 Discrete Fourier Transform (DFT)
551(3)
19.6 Fast Fourier Transform (FFT)
554(6)
19.7 The Power Spectrum
560(1)
19.8 Curve Fitting with Software Packages
561(11)
Problems
570(2)
Chapter 20 Case Studies: Curve Fitting
572(24)
20.1 Fitting Enzyme Kinetics (Chemical/Bio Engineering)
572(4)
20.2 Use of Splines to Estimate Heat Transfer (Civil/Environmental Engineering)
576(2)
20.3 Fourier Analysis (Electrical Engineering)
578(1)
20.4 Analysis of Experimental Data (Mechanical/Aerospace Engineering)
579(13)
Problems
581(11)
Epilogue: PART FIVE
592(1)
PT5.4 Trade-Offs
592(1)
PT5.5 Important Relationships and Formulas
593(1)
PT5.6 Advanced Methods and Additional References
594(2)
PART SIX NUMERICAL DIFFERENTIATION AND INTEGRATION
596(115)
PT6.1 Motivation
596(10)
PT6.2 Mathematical Background
606(2)
PT6.3 Orientation
608(4)
Chapter 21 Newton-Cotes Integration Formulas
612(30)
21.1 The Trapezoidal Rule
614(10)
21.2 Simpson's Rules
624(9)
21.3 Integration with Unequal Segments
633(3)
21.4 Open Integration Formulas
636(1)
21.5 Multiple Integrals
636(6)
Problems
638(4)
Chapter 22 Integration of Equations
642(25)
22.1 Newton-Cotes Algorithms for Equations
642(1)
22.2 Romberg Integration
643(6)
22.3 Adaptive Quadrature
649(2)
22.4 Gauss Quadrature
651(8)
22.5 Improper Integrals
659(3)
22.6 Monte Carlo Integration
662(5)
Problems
664(3)
Chapter 23 Numerical Differentiation
667(18)
23.1 High-Accuracy Differentiation Formulas
667(3)
23.2 Richardson Extrapolation
670(2)
23.3 Derivatives of Unequally Spaced Data
672(1)
23.4 Derivatives and Integrals for Data with Errors
673(1)
23.5 Partial Derivatives
674(1)
23.6 Numerical Integration/Differentiation with Software Packages
675(10)
Problems
682(3)
Chapter 24 Case Studies: Numerical Integration and Differentiation
685(26)
24.1 Integration to Determine the Total Quantity of Heat (Chemical/Bio Engineering)
685(2)
24.2 Effective Force on the Mast of a Racing Sailboat (Civil/Environmental Engineering)
687(2)
24.3 Root-Mean-Square Current by Numerical Integration (Electrical Engineering)
689(3)
24.4 Numerical Integration to Compute Work (Mechanical/Aerospace Engineering)
692(16)
Problems
696(12)
Epilogue: PART SIX
708(1)
PT6.4 Trade-Offs
708(1)
PT6.5 Important Relationships and Formulas
709(1)
PT6.6 Advanced Methods and Additional References
709(2)
PART SEVEN ORDINARY DIFFERENTIAL EQUATIONS
711(147)
PT7.1 Motivation
711(4)
PT7.2 Mathematical Background
715(2)
PT7.3 Orientation
717(4)
Chapter 25 Runge-Kutta Methods
721(46)
25.1 Euler's Method
722(11)
25.2 Improvements of Euler's Method
733(8)
25.3 Runge-Kutta Methods
741(10)
25.4 Systems of Equations
751(5)
25.5 Adaptive Runge-Kutta Methods
756(11)
Problems
764(3)
Chapter 26 Stiffness and Multistep Methods
767(26)
26.1 Stiffness
767(4)
26.2 Multistep Methods
771(22)
Problems
791(2)
Chapter 27 Boundary-Value and Eigenvalue Problems
793(30)
27.1 General Methods for Boundary-Value Problems
794(7)
27.2 Eigenvalue Problems
801(12)
27.3 ODEs and Eigenvalues with Software Packages
813(10)
Problems
820(3)
Chapter 28 Case Studies: Ordinary Differential Equations
823(35)
28.1 Using ODEs to Analyze the Transient Response of a Reactor (Chemical/Bio Engineering)
823(7)
28.2 Predator-Prey Models and Chaos (Civil/Environmental Engineering)
830(4)
28.3 Simulating Transient Current for an Electric Circuit (Electrical Engineering)
834(5)
28.4 The Swinging Pendulum (Mechanical/Aerospace Engineering)
839(16)
Problems
843(12)
Epilogue: PART SEVEN
855(1)
PT7.4 Trade-Offs
855(1)
PT7.5 Important Relationships and Formulas
856(1)
PT7.6 Advanced Methods and Additional References
856(2)
PART EIGHT PARTIAL DIFFERENTIAL EQUATIONS
858(88)
PT8.1 Motivation
858(4)
PT8.2 Orientation
862(3)
Chapter 29 Finite Difference: Elliptic Equations
865(21)
29.1 The Laplace Equation
865(2)
29.2 Solution Technique
867(6)
29.3 Boundary Conditions
873(6)
29.4 The Control-Volume Approach
879(3)
29.5 Software to Solve Elliptic Equations
882(4)
Problems
883(3)
Chapter 30 Finite Difference: Parabolic Equations
886(17)
30.1 The Heat-Conduction Equation
886(1)
30.2 Explicit Methods
887(4)
30.3 A Simple Implicit Method
891(4)
30.4 The Crank-Nicolson Method
895(3)
30.5 Parabolic Equations in Two Spatial Dimensions
898(5)
Problems
901(2)
Chapter 31 Finite-Element Method
903(25)
31.1 The General Approach
904(4)
31.2 Finite-Element Application in One Dimension
908(9)
31.3 Two-Dimensional Problems
917(4)
31.4 Solving PDEs with Software Packages
921(7)
Problems
925(3)
Chapter 32 Case Studies: Partial Differential Equations
928(18)
32.1 One-Dimensional Mass Balance of a Reactor (Chemical/Bio Engineering)
928(4)
32.2 Deflections of a Plate (Civil/Environmental Engineering)
932(2)
32.3 Two-Dimensional Electrostatic Field Problems (Electrical Engineering)
934(3)
32.4 Finite-Element Solution of a Series of Springs (Mechanical/Aerospace Engineering)
937(7)
Problems
941(3)
Epilogue: PART EIGHT
944(1)
PT8.3 Trade-Offs
944(1)
PT8.4 Important Relationships and Formulas
944(1)
PT8.5 Advanced Methods and Additional References
945(1)
Appendix A The Fourier Series 946(2)
Appendix B Getting Started With Matlab 948(8)
Appendix C Getting Started With Mathcad 956(11)
Bibliography 967(3)
Index 970