Muutke küpsiste eelistusi

Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere [Kõva köide]

(University of Oslo, Norway)
  • Formaat: Hardback, 630 pages, kõrgus x laius: 254x178 mm, With figures in colour and black and white
  • Sari: IOP Series in Plasma Physics
  • Ilmumisaeg: 30-Nov-2016
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 0750312521
  • ISBN-13: 9780750312523
Teised raamatud teemal:
  • Formaat: Hardback, 630 pages, kõrgus x laius: 254x178 mm, With figures in colour and black and white
  • Sari: IOP Series in Plasma Physics
  • Ilmumisaeg: 30-Nov-2016
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 0750312521
  • ISBN-13: 9780750312523
Teised raamatud teemal:
Preface xviii
Acknowledgments xix
Author biography xx
1 Introduction
1(1)
References
4
Part I Plasma basics
2 Basic concepts of the motion of charged particles
1(1)
2.1 Single particle orbits
1(15)
2.1.1 B ≠ 0 and E = 0
2(1)
2.1.2 E || B
3(1)
2.1.3 E T B
3(1)
2.1.4 Curvature drifts
4(1)
2.1.5 Polarization drifts, dE/dt ≠ 0
5(2)
2.1.6 Finite Larmor radius corrections
7(2)
2.1.7 Particle drifts when B T B
9(5)
2.1.8 Particle motion when B || B
14(2)
2.2 Adiabatic invariants
16(2)
2.3 Plasma instabilities explained by single particle motions
18(1)
2.3.1 Gravitational or Rayleigh--Taylor instability
19(1)
2.3.2 Polarization by magnetic field gradient flows
20(1)
2.3.3 Temperature gradient instability in inhomogeneous magnetic fields
21(1)
References
22
3 Collisions in magnetized plasmas
1(1)
3.1 Basic physics
1(8)
3.1.1 Particle collisions in magnetic fields
2(1)
3.1.2 Collisions in electric and magnetic fields with E B
3(5)
3.1.3 Collisions with neutrals
8(1)
3.2 Auroral arcs
9(6)
3.2.1 A simple model for an auroral arc
12(3)
3.3 Quasi-neutrality
15(1)
3.4 Plasma diamagnetism
16(2)
3.5 Diffusion in fully ionized plasmas
18(4)
3.5.1 Diffusion as a random walk
21(1)
3.6 Diffusion in partially ionized plasmas
22(1)
3.6.1 Short-circuited electric fields
23(1)
3.6.2 Self-consistent electric fields
24(2)
3.6.3 Unmagnetized plasmas
26(1)
References
27
Part II Electrostatic fluid models
4 The basic model for drift waves
1(1)
4.1 Physical picture
6(1)
4.2 Instability of small amplitude drift waves
7(1)
4.3 Spatially varying magnetic fields
8(1)
References
9
5 Simplified linear wave analysis
1(1)
5.1 Linear dispersion relation
2(3)
5.2 Physical picture
5(3)
5.2.1 The electron velocity
6(1)
5.2.2 Divergence-free currents
7(1)
5.3 Waves in rotating systems: Rossby waves
8(1)
5.3.1 The β-plane approximation
9(1)
5.3.2 Alternative model for the Rossby waves
10(2)
References
12
6 Resistive drift waves with cold ions
1(1)
6.1 Instability of small amplitude electrostatic drift waves
1(1)
6.2 Basic equations
2(3)
6.3 Equilibrium
5(1)
6.4 Perturbations
6(4)
6.4.1 Electron dynamics
6(2)
6.4.2 Ion dynamics
8(2)
6.5 Dispersion relation
10(2)
6.6 Amplitude and phase relations
12(1)
6.7 Physical picture
13(2)
6.7.1 Model consistency
15(2)
References
17
7 Resistive drift waves with warm ions
1(1)
7.1 Basic equations
1(2)
7.2 Equilibrium
3(1)
7.3 Perturbation
4(3)
7.4 Dispersion relation
7(1)
7.4.1 Pure drift wave
8(1)
7.4.2 Resistive-g mode
8(6)
7.4.3 Finite Larmor radius stabilization of flute modes
14(1)
References
15
8 Electrostatic drift waves with viscosity due to ion-ion collisions
1(1)
8.1 Dispersion relation
2(1)
8.1.1 Long-λ|| limit
3(2)
8.1.2 Amplitude and phase relations
5(1)
8.1.3 Short-λ|| limit
6(1)
8.1.4 An apparent paradox
7(1)
References
7
9 Experimental results
1(1)
9.1 The Q-machine
1(6)
9.2 Langmuir probes
7(8)
9.2.1 Plane probes
7(3)
9.2.2 Time varying conditions
10(4)
9.2.3 Emissive probes
14(1)
9.3 Experimental observations of drift waves
15(3)
References
18
10 Velocity shear driven instabilities
1(1)
10.1 Shear in ion velocities with ui T B
1(6)
10.1.1 Velocity shear instabilities without electron shielding
2(4)
10.1.2 Velocity shear instabilities with electron shielding
6(1)
10.2 Shear in ion velocities with ui || B
7(4)
References
11
11 Ionospheric conditions
1(1)
11.1 Collisions with neutrals
1(1)
11.2 Basic equations
2(2)
11.3 Equilibrium
4(1)
11.4 Perturbations
5(6)
11.4.1 Wave propagation perpendicular to both n0 and B
6(3)
11.4.2 Propagation in arbitrary directions
9(2)
11.5 Gradient instability
11(3)
11.5.1 Model equations
13(1)
11.6 Sound waves for stable conditions
14(2)
References
16
12 Inhomogeneous plasma temperatures
1(1)
12.1 Gradients in electron temperature
1(1)
12.2 The low frequency case, ω < Ωci
2(5)
12.2.1 Monotonic electron temperature variation
5(1)
12.2.2 Compact electron temperature variations
6(1)
12.3 The high frequency case, ω > Ωci
7(1)
12.4 Generalizations for Ti ≠ 0
8(1)
12.5 Linear drift waves with inhomogeneous electron temperatures
9(2)
12.6 Ion temperature gradient modes
11(3)
References
14
13 Waves in a gravitational plasma ionosphere
1(1)
13.1 Stable and unstable stratifications
1(3)
13.2 Wave propagation
4(5)
References
9
Part III Linear kinetic models
14 Kinetic models for electrostatic drift waves
1(1)
14.1 Drift kinetic equation
1(2)
14.2 Dispersion relations
3(1)
14.2.1 Simple model with Ti = 0
3(1)
14.2.2 Finite ion inertia
4(1)
14.2.3 Warm ions with (kyrL)2 < 1
5(1)
14.2.4 Kinetic ion model for (kyrL)2 ≤ 1
6(2)
14.2.5 High frequencies, ω > Ωci
8(1)
14.2.6 Ion cyclotron drift instability
9(1)
References
9
Part IV Linear drift Alfven waves
15 Electromagnetic modes
1(1)
15.1 Simplified linear theory
5(5)
References
10
Part V Weakly nonlinear waves
16 Classifications of turbulence conditions
1(1)
References
6
17 Weakly nonlinear waves in homogeneously magnetized plasmas
1(1)
17.1 Flute modes
1(17)
17.1.1 Discrete vortex modes
2(3)
17.1.2 Electron shielding
5(2)
17.1.3 Models with many vortices
7(2)
17.1.4 Hamiltonian property of vortex systems
9(3)
17.1.5 Collapse of unshielded vortices
12(6)
17.2 Steady state solutions with distributed vorticity
18(2)
17.2.1 Rotating modons
20(1)
17.2.2 Modons versus solitons
20(2)
References
22
18 Weakly nonlinear electrostatic drift waves
1(1)
18.1 The Hasegawa--Mima equation
1(12)
18.1.1 Linearized Hasegawa--Mima equation
5(1)
18.1.2 Conservation laws
5(2)
18.1.3 Coherent three wave interactions
7(1)
18.1.4 Stationary solutions
8(4)
18.1.5 Drift waves with electron temperature gradients
12(1)
18.2 The Hasegawa--Wakatani equations
13(1)
18.2.1 Electron dynamics
13(1)
18.2.2 Ion dynamics
13(1)
18.2.3 Hasegawa--Wakatani equations
14(1)
18.2.4 Linearized Hasegawa--Wakatani equations
15(1)
18.2.5 Conservation laws for the Hasegawa--Wakatani equations
16(3)
18.2.6 Comments on the Hasegawa--Wakatani equations
19(2)
References
21
Part VI Randomly varying fields and turbulence
19 Elements of statistical analysis
1(1)
19.1 One variable probabilities
3(4)
19.1.1 Generating functions
3(1)
19.1.2 Characteristic functions
4(1)
19.1.3 Change of variable
5(2)
19.2 Multi-variable probabilities
7(32)
19.2.1 Correlation
8(1)
19.2.2 Stochastic processes
9(4)
19.2.3 Correlation functions
13(1)
19.2.4 Conditional averages
14(3)
19.2.5 Time-stationary stochastic processes
17(10)
19.2.6 Spatial variables
27(3)
19.2.7 The Wiener--Khinchine theorem
30(5)
19.2.8 Wavenumber spectra
35(2)
19.2.9 Reduced wavenumber spectra
37(2)
19.3 Intermittency
39(1)
19.3.1 Spatial intermittency
40(1)
19.3.2 Temporal intermittency
41(3)
19.3.3 The Gaussian limit
44(1)
References
45
20 A reference model
1(1)
20.1 Campbell's theorem
2(7)
20.1.1 Proof of Campbell's theorem
3(2)
20.1.2 Extension of Campbell's theorem
5(4)
20.2 Probability densities
9(7)
20.2.1 Extended model
12(1)
20.2.2 Limit of low pulse densities
12(1)
20.2.3 Transition to Gaussian distributions
13(3)
20.3 Correlation functions
16(4)
20.3.1 Cross-correlation functions
19(1)
20.4 Spectral representation
20(4)
20.5 Statistics of integrals
24(1)
20.6 Consequences of finite record lengths
25(5)
20.6.1 Averages
25(1)
20.6.2 Auto-correlation functions
26(1)
20.6.3 Triple-correlation functions
27(1)
20.6.4 Cross-correlation functions
28(1)
20.6.5 Summary
29(1)
20.7 A practical application: model analysis by synthetic data
30(2)
20.8 Signal modeling
32(3)
20.9 Space--time varying signals
35(4)
20.10 Models with non-overlapping structures
39(4)
References
43
21 Random walk and classical diffusion
1(1)
21.1 Diffusion as a random walk
1(6)
21.1.1 Random walk with persistence
4(1)
21.1.2 Forward and backward equations
4(3)
21.2 Imposed boundary conditions
7(11)
21.2.1 Reflecting barriers
9(1)
21.2.2 Absorbing barriers
10(1)
21.2.3 Probable rate of arrival
11(1)
21.2.4 Probability of returns
12(3)
21.2.5 Limit of continuous distributions
15(3)
21.3 Confinement times
18(1)
21.3.1 Forward and backward equations
18(2)
21.3.2 One boundary
20(2)
21.3.3 Two boundaries
22(1)
21.3.4 A general method for determining average confinement times
23(2)
References
25
22 Turbulence in two and three spatial dimensions
1(1)
22.1 Viscosity
2(9)
22.1.1 Molecular viscosity
2(5)
22.1.2 Eddy viscosity
7(3)
22.1.3 Heuristic model for a turbulent boundary layer
10(1)
22.2 Energy and enstrophy budgets in two- and three-dimensional turbulence
11(3)
22.2.1 Energy budget expressed in wavenumbers
11(2)
22.2.2 Enstrophy budget
13(1)
22.3 Reynolds' decomposition
14(1)
22.4 Homogeneous turbulence
15(3)
22.4.1 Constraints of the mean field for homogeneous turbulence
16(1)
22.4.2 Equations for the fluctuation averages
16(2)
22.5 Structure functions and spectra
18(1)
22.5.1 Spatial structure functions: inertial subrange
18(1)
22.5.2 Wavenumber spectra: inertial subrange
19(3)
22.5.3 Viscous spectral subrange
22(2)
22.5.4 Temporal structure functions
24(1)
22.5.5 A summary of Heisenberg's derivation
25(2)
22.5.6 Extended models
27(1)
22.5.7 Discussions of the universal spectral subrange
28(2)
22.5.8 Intermittency and the velocity probability densities
30(1)
22.5.9 Conditional averages
31(1)
References
32
23 Low frequency turbulence in magnetized plasmas
1(1)
23.1 Homogeneous plasmas
1(5)
23.1.1 Two-dimensional random flows generated by superposition of line vortices
4(2)
23.1.2 Conditional averages
6(1)
23.2 Spectral cascade
6(8)
23.2.1 Simple argument for the inverse cascade
10(2)
23.2.2 Enstrophy spectrum
12(2)
23.3 Inhomogeneous plasmas
14(4)
23.3.1 Correlation functions
14(1)
23.3.2 Turbulent spectra
15(3)
23.4 Detection of power spectra
18(11)
23.4.1 Taylor's hypothesis
18(7)
23.4.2 Experimental observations of turbulent drift-wave spectra
25(4)
23.5 Coherent structures
29(3)
23.5.1 Conditional averaging, experimentally
32(2)
23.5.2 Results from conditional averaging
34(2)
23.5.3 Bi-orthogonal decomposition
36(2)
23.5.4 Comments of structures as a concept
38(1)
References
39
24 Turbulence in the ionosphere
1(1)
24.1 Observations
5(3)
24.2 Laboratory studies
8(2)
References
10
25 Turbulent diffusion
1(1)
25.1 Single particle diffusion
1(7)
25.1.1 Eulerian and Lagrangian mean-square velocities
6(2)
25.2 Relative diffusion
8(6)
25.2.1 Model equations for relative diffusion
12(2)
25.3 Models for center-of-mass diffusion
14(1)
25.4 Analytical expressions
14(4)
25.4.1 Corrsin's hypothesis
15(3)
25.5 Elongation of a contour
18(1)
25.6 Eulerian and Lagrangian dynamics in shear flows
19(1)
25.6.1 Turbulent diffusion in a linear shear flow
20(1)
References
21
Part VII Analytical tools in turbulence
26 Langevin's model for Brownian motion
1(1)
26.1 Limitations of the Langevin equation
3(1)
26.2 Brownian motion with central force
4(2)
26.3 Stochastic differential equations
6(2)
References
8
27 Markov processes
1(1)
27.1 Master equation
3(1)
27.2 Fokker--Planck equations
4(5)
27.2.1 Transition from discrete to continuous case
6(3)
27.3 Correlation functions and spectra
9(4)
27.3.1 Correlation functions for Gaussian Markov processes
10(3)
27.4 Relevance for turbulence
13(1)
27.4.1 One test of the Markov assumption in turbulence
13(5)
References
18
28 The quasi-normal approximation
1(1)
References
10
29 The direct interaction approximation
1(1)
29.1 Introduction to functional differentiation
1(2)
29.2 Basic equations for a reference model
3(4)
29.3 The direct interaction approximation
7(1)
29.3.1 DIA by example
8(5)
References
13
30 Diagram methods
1(1)
30.1 Approximate solution by the second order series method
6(1)
30.2 Approximate solution by the quasi-normal approximation
7(1)
30.3 Approximate solution by the DIA
8(2)
References
10
Appendices
A List of symbols used in the analysis of electrostatic drift waves
1(1)
B Chemistry of the ionosphere
1(1)
C Collisional cross-sections
1(1)
D Negative temperatures
1(1)
E Dimensional analysis
1(1)
F Summation convention
1(1)
G Physical constants
1(1)
H Useful vector relations
1(1)
I Differential operators in cylindrical geometry
1(1)
J Derivations of some special results
1