Preface |
|
xiii | |
Acknowledgments |
|
xv | |
|
|
3 | (18) |
|
|
|
1.1 Background and Motivation |
|
|
3 | (6) |
|
|
9 | (3) |
|
1.3 Scope and Organization |
|
|
12 | (9) |
|
2 Fundamentals of Circuit Networks |
|
|
21 | (18) |
|
|
|
|
|
21 | (1) |
|
2.2 Two-Port Scattering Matrix |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (2) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (4) |
|
2.9 Even-Odd Mode Analysis |
|
|
33 | (1) |
|
|
34 | (5) |
|
|
39 | (10) |
|
Bharatha Kumar Thangarasu |
|
|
|
|
|
40 | (1) |
|
|
41 | (3) |
|
3.2.1 Transistor Design Consideration for RF and Millimeter-Wave Frequency Applications |
|
|
43 | (1) |
|
3.3 BJT versus MOS Transistors and Hybrid Use |
|
|
44 | (5) |
|
|
49 | (14) |
|
|
|
|
|
50 | (1) |
|
|
50 | (2) |
|
|
52 | (2) |
|
|
52 | (1) |
|
4.3.2 Interdigital Capacitors |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
58 | (5) |
|
5 Variable Gain Amplifier |
|
|
63 | (20) |
|
Bharatha Kumar Thangarasu |
|
|
|
|
|
64 | (1) |
|
|
64 | (4) |
|
|
66 | (1) |
|
5.2.2 DC Offset Cancellation |
|
|
67 | (1) |
|
5.3 Variable Gain Amplifier Examples |
|
|
68 | (15) |
|
5.3.1 VGA1: Based on 0.18 μm SiGe BiCMOS Programmable Gain Amplifier Design |
|
|
68 | (5) |
|
5.3.2 VGA2: Based on 65 nm CMOS Variable Gain Amplifier Design |
|
|
73 | (10) |
|
|
83 | (18) |
|
Bharatha Kumar Thangarasu |
|
|
|
|
|
84 | (1) |
|
|
85 | (2) |
|
6.2.1 Amplifier Linearity versus Power Added Efficiency |
|
|
86 | (1) |
|
6.3 Power Amplifier Examples |
|
|
87 | (14) |
|
6.3.1 PA1: Differential Drive Amplifier Based on Variable Gain Control and Frequency-Tunable Load |
|
|
87 | (1) |
|
6.3.1.1 Variable gain amplifier stage analysis |
|
|
87 | (1) |
|
6.3.1.2 Frequency-tunable amplifier stage analysis |
|
|
88 | (3) |
|
6.3.1.3 Frequency-tunable load design |
|
|
91 | (1) |
|
6.3.1.4 Q-factor enhancement |
|
|
91 | (3) |
|
6.3.2 PA2: Single-Ended Transformer-Based Power Amplifier |
|
|
94 | (7) |
|
|
101 | (20) |
|
Bharatha Kumar Thangarasu |
|
|
|
|
|
102 | (1) |
|
|
103 | (3) |
|
|
104 | (1) |
|
|
104 | (1) |
|
7.2.3 Variable Gain LNA as a Trade-Off between Low Noise and Good Linearity Performance |
|
|
105 | (1) |
|
7.3 Low-Noise Amplifier Examples |
|
|
106 | (15) |
|
7.3.1 LNA1: Based on 65 nm CMOS with Custom-Built Inductor |
|
|
106 | (2) |
|
7.3.1.1 Marginally stable criteria and gain boosting |
|
|
108 | (1) |
|
7.3.1.2 Unstable criteria causing oscillations |
|
|
108 | (1) |
|
7.3.1.3 Unconditionally stable criteria |
|
|
108 | (5) |
|
7.3.2 LNA2: Based on 0.18 μm SiGe BiCMOS with Distributive Transmission Line Inductor and Interconnect Design |
|
|
113 | (8) |
|
8 Bi-Directional Low-Noise Amplifier |
|
|
121 | (16) |
|
Bharatha Kumar Thangarasu |
|
|
|
|
|
122 | (2) |
|
|
124 | (3) |
|
8.2.1 Signal Flow Direction Switch Control |
|
|
125 | (1) |
|
8.2.2 Interconnect Network Design |
|
|
126 | (1) |
|
8.3 Bi-Directional Low-Noise Amplifier Examples |
|
|
127 | (10) |
|
8.3.1 BDA1---Based on 65 nm CMOS with Custom-Built Inductor and Micro-Strip Line Three-Port Interconnect Network |
|
|
127 | (3) |
|
8.3.2 BDA2---Based on 0.18 μm SiGe BiCMOS with Distributive Transmission Line Inductor and Interconnect Network Design |
|
|
130 | (7) |
|
|
137 | (46) |
|
|
|
|
|
137 | (11) |
|
9.1.1 Basic Mixer Operation |
|
|
137 | (2) |
|
9.1.2 Controlled Transconductance Mixer |
|
|
139 | (3) |
|
9.1.3 Transconductor Implementation |
|
|
142 | (2) |
|
9.1.4 The Issue of Balance in Mixers |
|
|
144 | (4) |
|
|
148 | (10) |
|
9.2.1 FET Resistive Mixer |
|
|
148 | (3) |
|
|
151 | (2) |
|
9.2.3 Gilbert Cell--Based Mixer |
|
|
153 | (1) |
|
9.2.4 Some Techniques Used in Gilbert Cell--Based Mixers |
|
|
154 | (4) |
|
|
158 | (19) |
|
|
158 | (1) |
|
9.3.2 Anti-Parallel Diode Pair |
|
|
159 | (2) |
|
9.3.3 Techniques Used in Sub-Harmonic APDP Mixer |
|
|
161 | (4) |
|
9.3.4 Topology of Transistor-Based Sub-Harmonic Mixer |
|
|
165 | (2) |
|
9.3.5 Operation Mechanism of the Transistor-Based 2× HM |
|
|
167 | (2) |
|
9.3.6 A 60 GHz Transistor-Based 2× Sub-Harmonic Modulator |
|
|
169 | (5) |
|
9.3.7 Some Techniques Used in Sub-harmonic Mixer Designs |
|
|
174 | (2) |
|
9.3.8 The 4× Sub-Harmonic Mixer |
|
|
176 | (1) |
|
|
177 | (6) |
|
10 Voltage-Controlled Oscillator |
|
|
183 | (24) |
|
|
|
|
|
184 | (6) |
|
10.1.1 Overview of VCO Architectures |
|
|
184 | (1) |
|
|
185 | (1) |
|
10.1.3 Performance Parameter |
|
|
186 | (4) |
|
|
190 | (5) |
|
|
191 | (2) |
|
|
193 | (2) |
|
10.3 LC-VCO Topologies for Millimeter-Wave Frequency |
|
|
195 | (6) |
|
10.3.1 Cross-Coupled LC-VCO |
|
|
195 | (3) |
|
|
198 | (3) |
|
|
201 | (6) |
|
11 Microwave and Millimeter-Wave Switches |
|
|
207 | (18) |
|
|
|
|
|
208 | (4) |
|
11.2 SPDT Switches Based on λg/4 T-line Topology |
|
|
212 | (1) |
|
11.3 SPDT Switches Based on Magnetically Switchable Artificial Resonator Topology |
|
|
213 | (1) |
|
|
213 | (5) |
|
11.5 Auxiliary Coupled Lines |
|
|
218 | (3) |
|
11.6 State-of-the-Art Switches |
|
|
221 | (4) |
|
12 Millimeter-Wave Beam Forming |
|
|
225 | (20) |
|
|
|
|
|
227 | (1) |
|
12.2 Recent Implementations |
|
|
227 | (1) |
|
12.3 Variable Phase Shifters |
|
|
228 | (3) |
|
12.4 Reflective-Type Phase Shifter |
|
|
231 | (2) |
|
12.5 Switched-Type Phase Shifter |
|
|
233 | (3) |
|
12.6 Vector-Modulation Phase Shifter |
|
|
236 | (1) |
|
12.7 Loaded-Line Phase Shifter |
|
|
237 | (2) |
|
|
239 | (6) |
|
|
245 | (38) |
|
|
|
|
13.1 Introduction to Concept of Frequency Synthesis |
|
|
246 | (1) |
|
13.2 Phase-Locked Loop Frequency Synthesizer |
|
|
247 | (14) |
|
13.2.1 Performance Parameters |
|
|
247 | (1) |
|
13.2.1.1 Frequency tuning range |
|
|
248 | (1) |
|
|
248 | (1) |
|
13.2.1.3 Spurious signals |
|
|
249 | (1) |
|
13.2.1.4 Frequency resolution and settling time |
|
|
250 | (1) |
|
|
251 | (1) |
|
13.2.1.6 Power consumption and output power |
|
|
251 | (1) |
|
13.2.2 Phase-Lock Loop Modeling |
|
|
252 | (1) |
|
13.2.2.1 Linearized PLL analysis |
|
|
252 | (4) |
|
13.2.2.2 PLL noise analysis |
|
|
256 | (2) |
|
13.2.3 Phase-Lock Loop Frequency Synthesizer Architectures |
|
|
258 | (1) |
|
13.2.3.1 Integer-N frequency synthesizer |
|
|
258 | (2) |
|
13.2.3.2 Fractional-N frequency synthesizer |
|
|
260 | (1) |
|
13.3 Frequency Synthesizer Building Blocks |
|
|
261 | (22) |
|
13.3.1 Voltage-Controlled Oscillator |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
13.3.1.3 Phase noise in oscillators |
|
|
262 | (2) |
|
13.3.1.4 Circuit implementation of LC oscillators |
|
|
264 | (1) |
|
13.3.2 High-Frequency Divider |
|
|
264 | (1) |
|
13.3.2.1 Static frequency divider |
|
|
265 | (1) |
|
13.3.2.2 Injection locked frequency divider |
|
|
266 | (1) |
|
13.3.2.3 Circuit implementation of ILFD |
|
|
267 | (1) |
|
13.3.2.4 ILFD design example |
|
|
268 | (4) |
|
13.3.3 Low-Frequency Divider |
|
|
272 | (1) |
|
13.3.4 Phase Frequency Detector |
|
|
273 | (2) |
|
|
275 | (1) |
|
13.3.5.1 Current mismatch |
|
|
276 | (1) |
|
|
276 | (1) |
|
13.3.5.3 Clock feedthrough |
|
|
277 | (1) |
|
|
277 | (1) |
|
13.3.5.5 Charge injection |
|
|
278 | (5) |
|
14 Digital IC Design for Transceiver SOC |
|
|
283 | (36) |
|
|
|
|
|
284 | (1) |
|
14.2 Standard Library Introduction |
|
|
284 | (7) |
|
|
286 | (1) |
|
|
286 | (1) |
|
14.2.3 RAM, ROM IP Compiler |
|
|
287 | (1) |
|
14.2.4 IP from Third-Party Vendor |
|
|
287 | (1) |
|
14.2.5 Power Management Kits |
|
|
288 | (1) |
|
|
289 | (1) |
|
14.2.6.1 Timing and power library |
|
|
289 | (1) |
|
14.2.6.2 Physical definition |
|
|
289 | (1) |
|
14.2.6.3 Current source model |
|
|
290 | (1) |
|
14.2.6.4 Verilog and spice module |
|
|
291 | (1) |
|
14.2.6.5 Layout vs. schematic netlist |
|
|
291 | (1) |
|
14.3 Digital Frontend Design Flow |
|
|
291 | (9) |
|
14.3.1 System-Level Design |
|
|
292 | (2) |
|
14.3.2 HDL Coding, Simulation, and Verification |
|
|
294 | (1) |
|
14.3.2.1 SystemVerilog-based verification |
|
|
295 | (1) |
|
|
295 | (2) |
|
14.3.2.3 Hardware-based verification |
|
|
297 | (1) |
|
14.3.3 Synthesis Based on Design Constraints |
|
|
297 | (1) |
|
14.3.4 Static Timing Analysis |
|
|
298 | (1) |
|
14.3.5 Formal Equivalence Checking |
|
|
298 | (1) |
|
14.3.6 Design for Testability |
|
|
299 | (1) |
|
14.4 Digital Backend Design Flow |
|
|
300 | (8) |
|
|
300 | (1) |
|
|
301 | (1) |
|
14.4.1.2 Macro IP placement |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
14.4.3 Clock Tree Synthesis |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
305 | (1) |
|
14.4.6 Multi-Mode, Multi-Corner Analysis and Optimization |
|
|
306 | (1) |
|
14.4.7 Signoff Static Timing Analysis |
|
|
306 | (1) |
|
14.4.8 Formal Verification |
|
|
307 | (1) |
|
|
307 | (1) |
|
14.5 Low-Power IC Design Methodology |
|
|
308 | (11) |
|
14.5.1 Power Consumption Source |
|
|
308 | (1) |
|
|
308 | (2) |
|
|
310 | (1) |
|
14.5.2 Low-Power Technologies |
|
|
311 | (1) |
|
|
311 | (1) |
|
14.5.2.2 Logic-level power reduction |
|
|
312 | (1) |
|
14.5.2.3 Multiple-VT design |
|
|
313 | (1) |
|
14.5.2.4 Multiple-voltage design |
|
|
313 | (1) |
|
14.5.2.5 Power gating technology |
|
|
314 | (1) |
|
14.5.2.6 Unified power format |
|
|
314 | (5) |
|
15 60 GHz Transceiver SOC |
|
|
319 | (14) |
|
|
|
15.1 60 GHz RF Transceiver SOC Architecture |
|
|
321 | (2) |
|
15.2 Synthesizer and the LO Feed Network |
|
|
323 | (2) |
|
15.3 Interface and Spurious Control |
|
|
325 | (8) |
Index |
|
333 | |