Muutke küpsiste eelistusi

Low-Rank and Sparse Modeling for Visual Analysis Softcover reprint of the original 1st ed. 2014 [Pehme köide]

Edited by
  • Formaat: Paperback / softback, 236 pages, kõrgus x laius: 235x155 mm, kaal: 3752 g, 51 Illustrations, color; 15 Illustrations, black and white; VII, 236 p. 66 illus., 51 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 01-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319355678
  • ISBN-13: 9783319355672
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 236 pages, kõrgus x laius: 235x155 mm, kaal: 3752 g, 51 Illustrations, color; 15 Illustrations, black and white; VII, 236 p. 66 illus., 51 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 01-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319355678
  • ISBN-13: 9783319355672
This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.
Nonlinearly Structured Low-Rank Approximation.- Latent Low-Rank Representation.- Scalable Low-Rank Representation.- Low-Rank and Sparse Dictionary Learning.- Low-Rank Transfer Learning.- Sparse Manifold Subspace Learning.- Low Rank Tensor Manifold Learning.- Low-Rank and Sparse Multi-Task Learning.- Low-Rank Outlier Detection.- Low-Rank Online Metric Learning.
Yun Fu is an Assistant Professor, ECE and CS, Northeastern University