Muutke küpsiste eelistusi

Lumped Elements for RF and Microwave Circuits, Second Edition 2nd Unabridged edition [Kõva köide]

  • Formaat: Hardback, 600 pages, kõrgus x laius: 254x178 mm
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1630819328
  • ISBN-13: 9781630819323
Teised raamatud teemal:
  • Formaat: Hardback, 600 pages, kõrgus x laius: 254x178 mm
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1630819328
  • ISBN-13: 9781630819323
Teised raamatud teemal:
Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. Youll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. Youll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines.
Preface xvii
Chapter 1 Introduction
1(1)
1.1 History of Lumped Elements
1(1)
1.2 Why Use Lumped Elements for RF and Microwave Circuits?
1(2)
1.3 L, C, R Circuit Elements
3(1)
1.4 Basic Design of Lumped Elements
4(3)
1.4.1 Capacitor
6(1)
1.4.2 Inductor
6(1)
1.4.3 Resistor
7(1)
1.5 Lumped-Element Modeling
7(2)
1.6 Fabrication
9(1)
1.7 Applications
10(3)
References
10(3)
Chapter 2 Inductors
13(32)
2.1 Introduction
13(1)
2.2 Basic Definitions
13(5)
2.2.1 Inductance
14(1)
2.2.2 Magnetic Energy
14(1)
2.2.3 Mutual Inductance
15(1)
2.2.4 Effective Inductance
16(1)
2.2.5 Impedance
16(1)
2.2.6 Time Constant
16(1)
2.2.7 Quality Factor
17(1)
2.2.8 Self-Resonant Frequency
18(1)
2.2.9 Maximum Current Rating
18(1)
2.2.10 Maximum Power Rating
18(1)
2.2.11 Other Parameters
18(1)
2.3 Inductor Configurations
18(1)
2.4 Inductor Models
19(16)
2.4.1 Analytical Models
20(2)
2.4.2 Coupled-Line Approach
22(5)
2.4.3 Mutual Inductance Approach
27(2)
2.4.4 Numerical Approach
29(1)
2.4.5 Measurement-Based Model
29(6)
2.5 Coupling Between Inductors
35(5)
2.5.1 Low-Resistivity Substrates
36(1)
2.5.2 High-Resistivity Substrates
37(3)
2.6 Electrical Representations
40(5)
2.6.1 Series and Parallel Representations
40(1)
2.6.2 Network Representations
40(1)
References
41(4)
Chapter 3 Printed Inductors
45(64)
3.1 Inductors on Si Substrate
45(24)
3.1.1 Conductor Loss
47(3)
3.1.2 Substrate Loss
50(1)
3.1.3 Layout Considerations
51(2)
3.1.4 Inductor Model
53(2)
3.1.5 Q-Enhancement Techniques
55(9)
3.1.6 Stacked-Coil Inductor
64(3)
3.1.7 Temperature Dependence
67(2)
3.2 Inductors on GaAs Substrate
69(25)
3.2.1 Inductor Models
70(2)
3.2.2 Figure of Merit
72(1)
3.2.3 Comprehensive Inductor Data
72(13)
3.2.4 Q-Enhancement Techniques
85(5)
3.2.5 Compact Inductors
90(4)
3.2.6 High Current Handling Capability Inductors
94(1)
3.3 Printed Circuit Board Inductors
94(4)
3.4 Hybrid Integrated Circuit Inductors
98(5)
3.4.1 Thin-Film Inductors
98(2)
3.4.2 Thick-Film Inductors
100(2)
3.4.3 LTCC Inductors
102(1)
3.5 Ferromagnetic Inductors
103(6)
References
104(5)
Chapter 4 Wire Inductors
109(24)
4.1 Wire-Wound Inductors
109(8)
4.1.1 Analytical Expressions
109(5)
4.1.2 Compact High-Frequency Inductors
114(3)
4.2 Bond Wire Inductor
117(8)
4.2.1 Single and Multiple Wires
117(3)
4.2.2 Wire Near a Corner
120(1)
4.2.3 Wire on a Substrate Backed by a Ground Plane
120(2)
4.2.4 Wire Above a Substrate Backed by a Ground Plane
122(1)
4.2.5 Curved Wire Connecting Substrates
123(1)
4.2.6 Twisted Wire
124(1)
4.2.7 Maximum Current Handling of Wires
124(1)
4.3 Wire Models
125(2)
4.3.1 Numerical Methods for Bond Wires
125(1)
4.3.2 Measurement-Based Model for Air Core Inductors
125(2)
4.3.3 Measurement-Based Model for Bond Wires
127(1)
4.4 Broadband Inductors
127(2)
4.5 Magnetic Materials
129(4)
References
130(3)
Chapter 5 Capacitors
133(22)
5.1 Introduction
133(1)
5.2 Capacitor Parameters
134(5)
5.2.1 Capacitor Value
134(1)
5.2.2 Effective Capacitance
135(1)
5.2.3 Tolerances
135(1)
5.2.4 Temperature Coefficient
135(1)
5.2.5 Quality Factor
135(1)
5.2.6 Equivalent Series Resistance
136(1)
5.2.7 Series and Parallel Resonances
137(1)
5.2.8 Dissipation Factor or Loss Tangent
138(1)
5.2.9 Time Constant
138(1)
5.2.10 Rated Voltage
138(1)
5.2.11 Rated Current
138(1)
5.3 Chip Capacitor Types
139(1)
5.3.1 Multilayer Dielectric Capacitor
139(1)
5.3.2 Multiplate Capacitor
140(1)
5.4 Discrete "Parallel Plate Capacitor Analysis
140(7)
5.4.1 Vertically Mounted Series Capacitor
141(1)
5.4.2 Flat-Mounted Series Capacitor
142(2)
5.4.3 Flat-Mounted Shunt Capacitor
144(1)
5.4.4 Measurement-Based Model
145(2)
5.5 Voltage and Current Ratings
147(4)
5.5.1 Maximum Voltage Rating
147(1)
5.5.2 Maximum RF Current Rating
148(1)
5.5.3 Maximum Power Dissipation
148(3)
5.6 Capacitor Electrical Representation
151(4)
5.6.1 Series and Shunt Connections
151(1)
5.6.2 Network Representations
152(1)
References
153(2)
Chapter 6 Monolithic Capacitors
155(30)
6.1 MIM Capacitor Models
156(9)
6.1.1 Simple Lumped Equivalent Circuit
156(1)
6.1.2 Single Microstrip-Based Distributed Model
157(3)
6.1.3 EC Model for MIM Capacitor on Si
160(2)
6.1.4 EM Simulations of Capacitors
162(3)
6.2 High-Density Capacitors
165(8)
6.2.1 Multilayer Capacitors
165(2)
6.2.2 Ultra-Thin-Film Capacitors
167(2)
6.2.3 High-K Capacitors
169(1)
6.2.4 Fractal Capacitors
169(1)
6.2.5 Ferroelectric Capacitors
170(3)
6.3 Capacitor Shapes
173(3)
6.3.1 Rectangular Capacitors
173(1)
6.3.2 Circular Capacitors
174(1)
6.3.3 Octagonal Capacitors
174(2)
6.4 Design Considerations
176(9)
6.4.1 Q-Enhancement Techniques
176(2)
6.4.2 Tunable Capacitor
178(1)
6.4.3 Maximum Power Handling
178(3)
References
181(4)
Chapter 7 Interdigital Capacitors
185(18)
7.1 Interdigital Capacitor Models
186(5)
7.1.1 Approximate Analysis
186(4)
7.1.2 Full-Wave Analysis
190(1)
7.1.3 Measurement-Based Model
190(1)
7.2 Design Considerations
191(9)
7.2.1 Compact Size
191(1)
7.2.2 Multilayer Capacitor
191(4)
7.2.3 Q-Enhancement Techniques
195(2)
7.2.4 Voltage Tunable Capacitor
197(1)
7.2.5 High-Voltage Operation
198(2)
7.3 Interdigital Structure as a Photodetector
200(3)
References
200(3)
Chapter 8 Resistors
203(22)
8.1 Introduction
203(2)
8.2 Basic Definitions
205(2)
8.2.1 Power Rating
205(1)
8.2.2 Temperature Coefficient
205(1)
8.2.3 Resistor Tolerances
205(1)
8.2.4 Maximum Working Voltage
206(1)
8.2.5 Maximum Frequency of Operation
206(1)
8.2.6 Stability
206(1)
8.2.7 Noise
206(1)
8.2.8 Maximum Current Rating
206(1)
8.3 Resistor Types
207(5)
8.3.1 Chip Resistors
207(1)
8.3.2 MCM Resistors
207(1)
8.3.3 Monolithic Resistors
207(5)
8.4 High-Power Resistors
212(2)
8.5 Resistor Models
214(4)
8.5.1 EC Model
214(2)
8.5.2 Distributed Model
216(1)
8.5.3 Meander Line Resistor
217(1)
8.6 Resistor Representations
218(2)
8.6.1 Network Representations
218(1)
8.6.2 Electrical Representations
218(2)
8.7 Effective Conductivity
220(1)
8.8 Thermistors
221(4)
References
222(3)
Chapter 9 Via Holes
225(18)
9.1 Types of Via Holes
225(3)
9.1.1 Via Hole Connection
225(1)
9.1.2 Via Hole Ground
225(3)
9.2 Via Hole Models
228(5)
9.2.1 Analytical Expression
228(1)
9.2.2 Quasi-static Method
229(1)
9.2.3 Parallel Plate Waveguide Model
230(2)
9.2.4 Method of Moments
232(1)
9.2.5 Measurement-Based Model
232(1)
9.3 Via Fence
233(3)
9.3.1 Coupling Between Via Holes
235(1)
9.3.2 Radiation from Via Ground Plug
236(1)
9.4 Plated Heat Sink Via
236(2)
9.5 Via Hole Layout
238(1)
9.6 Silicon Vias
239(4)
References
239(4)
Chapter 10 Airbridges and Dielectric Crossovers
243(16)
10.1 Airbridge and Crossover
243(1)
10.2 Analysis Techniques
243(8)
10.2.1 Quasi-static Method
244(4)
10.2.2 Full-Wave Analysis
248(3)
10.3 Models
251(8)
10.3.1 Analytical Model
251(4)
10.3.2 Measurement-Based Model
255(1)
References
256(3)
Chapter 11 Inductor Transformers and Baluns
259(48)
11.1 Basic Theory
259(10)
11.1.1 Parameters Definition
259(1)
11.1.2 Analysis of Transformers
260(3)
11.1.3 Ideal Transformers
263(1)
11.1.4 Equivalent Circuit Representation
263(2)
11.1.5 Equivalent Circuit of a Practical Transformer
265(1)
11.1.6 Wideband Impedance Matching Transformers
266(3)
11.1.7 Types of Transformers
269(1)
11.2 Wire-Wrapped Transformers
269(2)
11.2.1 Tapped Coil Transformers
269(2)
11.2.2 Bond Wire Transformer
271(1)
11.3 Transmission-Line Type Transformers
271(3)
11.4 Parallel Conductor Winding Transformers on Si Substrate
274(1)
11.5 Spiral Transformers on GaAs Substrate
275(5)
11.6 Baluns
280(27)
11.6.1 Lumped-Element LP/HP Filter Baluns
283(3)
11.6.2 Lumped-Element Power Divider and 180° Hybrid Baluns
286(1)
11.6.3 Coil Transformer Baluns
287(2)
11.6.4 Transmission-Line Baluns
289(3)
11.6.5 Marchand Baluns
292(9)
11.6.6 Common-Mode Rejection Ratio
301(1)
References
301(6)
Chapter 12 Lumped-Element Passive Components
307(58)
12.1 Impedance Matching Techniques
308(8)
12.1.1 One-Port and Two-Port Networks
308(1)
12.1.2 Lumped-Element Narrowband Matching Techniques
309(6)
12.1.3 Lumped-Element Wideband Matching Techniques
315(1)
12.2 90° Hybrids
316(7)
12.2.1 Broadband 3-dB 90° Hybrid
320(1)
12.2.2 Reconfigurable 3-dB 90° Hybrid
321(1)
12.2.3 Dual-Band 3-dB 90° Hybrid
322(1)
12.2.4 Differential 3-dB 90° Hybrid
322(1)
12.3 180° Hybrids
323(4)
12.3.1 Compact Lumped-Element 3-dB 180° Hybrid
324(1)
12.3.2 Wideband Lumped-Element Differential 3-dB 180° Hybrids
325(2)
12.4 Directional Couplers
327(6)
12.4.1 Transformer Directional Couplers
328(3)
12.4.2 High Isolation Directional Couplers
331(1)
12.4.3 Differential Directional Couplers
331(1)
12.4.4 Directional Coupler with Impedance Matching
332(1)
12.5 Power Dividers/Combiners
333(8)
12.5.1 Power Dividers with 90° and 180° Phase Difference
336(1)
12.5.2 Broadband 2-Way and 4-Way Power Dividers
336(1)
12.5.3 Compact 2-Way and 4-Way Power Dividers
337(2)
12.5.4 Dual-Band Power Dividers
339(1)
12.5.5 Differential Power Dividers
340(1)
12.6 Filters
341(9)
12.6.1 Ceramic Lumped-Element LTCC Bandpass Filters
342(1)
12.6.2 Dual-Band Filters
342(1)
12.6.3 Reconfigurable and Switchable Filters
343(1)
12.6.4 High Selectivity Compact BPF
344(1)
12.6.5 Differential-Mode and Common-Mode Rejection Filters
345(2)
12.6.6 Tunable BPF with Constant Bandwidth
347(1)
12.6.7 Compact Si Bandpass Filter
348(1)
12.6.8 Compact CMOS Bandpass Filters
348(2)
12.7 Biasing Networks
350(15)
12.7.1 Biasing of Diodes and Control Components
350(4)
12.7.2 Biasing of Active Circuits
354(4)
References
358(7)
Chapter 13 Lumped-Element Control Components
365(86)
13.1 Switches
365(19)
13.1.1 Switch Configurations
366(2)
13.1.2 Broadband Switches
368(2)
13.1.3 MESFET Switches
370(3)
13.1.4 HEMT Switches
373(4)
13.1.5 CMOS Switches
377(5)
13.1.6 GaN HEMT Switches
382(2)
13.1.7 Comparison of Switch Technologies
384(1)
13.2 Phase Shifters
384(25)
13.2.1 Types of Phase Shifters
385(3)
13.2.2 Switched-Network Phase Shifters
388(5)
13.2.3 Multibit Phase Shifter Circuits
393(1)
13.2.4 MESFET/HEMT Multibit Phase Shifters
394(4)
13.2.5 CMOS Phase Shifters
398(3)
13.2.6 Analog Phase Shifters
401(2)
13.2.7 Broadband Phase Shifters
403(2)
13.2.8 Ultrawideband Phase Shifters
405(1)
13.2.9 Millimeter-Wave Phase Shifters
406(3)
13.2.10 Active Phase Shifters
409(1)
13.3 Attenuators
409(16)
13.3.1 Attenuator Configurations
409(2)
13.3.2 Multibit Attenuators
411(1)
13.3.3 GaAs MMIC Step Attenuators
412(2)
13.3.4 Si CMOS Step Attenuators
414(3)
13.3.5 Variable Voltage Attenuators
417(5)
13.3.6 GaN HEMT Attenuator
422(1)
13.3.7 Phase Compensated Attenuators
423(1)
13.3.8 CMOS Attenuator with Integrated Switch
424(1)
13.4 Limiters
425(26)
13.4.1 Limiter Types
426(2)
13.4.2 Diode Limiter Circuits
428(3)
13.4.3 FET Switch Limiter Circuits
431(1)
13.4.4 Matched Limiters
431(1)
13.4.5 Limiter/LNA
432(5)
References
437(14)
Chapter 14 Lumped-Element Active Circuits
451(100)
14.1 Amplifiers
452(18)
14.1.1 Low-Noise Amplifiers
453(8)
14.1.2 Power Amplifiers
461(8)
14.1.3 Differential Amplifiers
469(1)
14.1.4 Buffer Amplifiers
470(1)
14.2 Oscillators
470(11)
14.2.1 Oscillator Configurations
471(1)
14.2.2 Operation of Oscillators
472(2)
14.2.3 Phase Noise in Oscillators
474(1)
14.2.4 Oscillator Design
475(1)
14.2.5 GaAs HEMT and HBT-HEMT Based VCOs
476(2)
14.2.6 Si-Based VCOs
478(3)
14.3 Mixers
481(9)
14.3.1 Passive Mixer Circuits
482(4)
14.3.2 Active Mixer Circuits
486(4)
14.4 Frequency Multipliers
490(14)
14.4.1 Introduction
490(1)
14.4.2 Diode Multipliers
491(2)
14.4.3 Transistor Multipliers
493(1)
14.4.4 Frequency Doublers
493(6)
14.4.5 Frequency Triplers
499(4)
14.4.6 Frequency Quadrupler and Higher-Order Multipliers
503(1)
14.5 Frequency Dividers
504(13)
14.5.1 Regenerative Frequency Dividers
506(2)
14.5.2 Injection-Locked Frequency Dividers
508(4)
14.5.3 Divide-by-3 Injection-Locked Frequency Dividers
512(2)
14.5.4 Divide-by-4 and Higher-Order Dividers
514(3)
14.6 Other Active Circuits
517(34)
14.6.1 Active Baluns
517(4)
14.6.2 Active Inductors
521(4)
14.6.3 Active Capacitors
525(2)
14.6.4 Active Filters
527(4)
14.6.5 Active Circulators
531(6)
References
537(14)
About the Author 551(2)
Index 553