Preface |
|
xi | |
Acknowledgments |
|
xiii | |
|
1 Linear Support Vector Machines |
|
|
1 | (34) |
|
|
1 | (1) |
|
|
2 | (10) |
|
1.2.1 The Structure of a Learning Machine |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
8 | (1) |
|
1.2.5 Dual Representations and Dual Solutions |
|
|
8 | (4) |
|
1.3 Empirical Risk and Structural Risk |
|
|
12 | (4) |
|
1.4 Support Vector Machines for Classification |
|
|
16 | (11) |
|
|
16 | (4) |
|
1.4.2 Support Vector Machine Optimization |
|
|
20 | (7) |
|
1.5 Support Vector Machines for Regression |
|
|
27 | (8) |
|
1.5.1 The v Support Vector Regression |
|
|
29 | (3) |
|
|
32 | (3) |
|
2 Linear Gaussian Processes |
|
|
35 | (26) |
|
|
35 | (1) |
|
|
36 | (4) |
|
2.2.1 Computing the Probability of an Event Conditional to Another |
|
|
37 | (1) |
|
2.2.2 Definition of Conditional Probabilities |
|
|
38 | (1) |
|
2.2.3 The Bayes' Rule and the Marginalization Operation |
|
|
38 | (1) |
|
2.2.4 Independency and Conditional Independency |
|
|
39 | (1) |
|
2.3 Bayesian Inference in a Linear Estimator |
|
|
40 | (1) |
|
2.4 Linear Regression with Gaussian Processes |
|
|
41 | (3) |
|
2.4.1 Parameter Posterior |
|
|
42 | (2) |
|
2.5 Predictive Posterior Derivation |
|
|
44 | (2) |
|
2.6 Dual Representation of the Predictive Posterior |
|
|
46 | (7) |
|
2.6.1 Derivation of the Dual Solution |
|
|
46 | (3) |
|
2.6.2 Interpretation of the Variance Term |
|
|
49 | (4) |
|
2.7 Inference over the Likelihood Parameter |
|
|
53 | (3) |
|
2.8 Multitask Gaussian Processes |
|
|
56 | (5) |
|
|
58 | (3) |
|
3 Kernels for Signal and Array Processing |
|
|
61 | (60) |
|
|
61 | (1) |
|
3.2 Kernel Fundamentals and Theory |
|
|
62 | (29) |
|
3.2.1 Motivation for RKHS |
|
|
63 | (5) |
|
|
68 | (3) |
|
3.2.3 Some Dot Product Properties |
|
|
71 | (5) |
|
3.2.4 Their Use for Kernel Construction |
|
|
76 | (4) |
|
3.2.5 Kernel Eigenanalysis |
|
|
80 | (9) |
|
3.2.6 Complex RKHS and Complex Kernels |
|
|
89 | (2) |
|
3.3 Kernel Machine Learning |
|
|
91 | (17) |
|
3.3.1 Kernel Machines and Regularization |
|
|
92 | (4) |
|
3.3.2 The Importance of the Bias Kernel |
|
|
96 | (4) |
|
3.3.3 Kernel Support Vector Machines |
|
|
100 | (6) |
|
3.3.4 Kernel Gaussian Processes |
|
|
106 | (2) |
|
3.4 Kernel Framework for Estimating Signal Models |
|
|
108 | (13) |
|
3.4.1 Primal Signal Models |
|
|
110 | (3) |
|
|
113 | (3) |
|
|
116 | (2) |
|
|
118 | (3) |
|
4 The Basic Concepts of Deep Learning |
|
|
121 | (46) |
|
|
121 | (2) |
|
4.2 Feedforward Neural Networks |
|
|
123 | (18) |
|
4.2.1 Structure of a Feedforward Neural Network |
|
|
123 | (3) |
|
4.2.2 Training Criteria and Activation Functions |
|
|
126 | (5) |
|
4.2.3 ReLU for Hidden Units |
|
|
131 | (1) |
|
4.2.4 Training with the BP Algorithm |
|
|
132 | (9) |
|
4.3 Manifold Learning and Embedding Spaces |
|
|
141 | (26) |
|
4.3.1 Manifolds, Embeddings, and Algorithms |
|
|
143 | (4) |
|
|
147 | (11) |
|
4.3.3 Deep Belief Networks |
|
|
158 | (5) |
|
|
163 | (4) |
|
5 Deep Learning Structures |
|
|
167 | (28) |
|
|
167 | (1) |
|
|
168 | (7) |
|
5.3 Convolutional Neural Networks |
|
|
175 | (8) |
|
5.4 Recurrent Neural Networks |
|
|
183 | (5) |
|
5.4.1 Basic Recurrent Neural Network |
|
|
183 | (1) |
|
5.4.2 Training a Recurrent Neural Network |
|
|
184 | (2) |
|
5.4.3 Long Short-Term Memory Network |
|
|
186 | (2) |
|
5.5 Variational Autoencoders |
|
|
188 | (7) |
|
|
193 | (2) |
|
6 Direction of Arrival Estimation |
|
|
195 | (44) |
|
|
195 | (2) |
|
6.2 Fundamentals of DOA Estimation |
|
|
197 | (5) |
|
6.3 Conventional DOA Estimation |
|
|
202 | (4) |
|
|
202 | (2) |
|
6.3.2 Rotational Invariance Technique |
|
|
204 | (2) |
|
6.4 Statistical Learning Methods |
|
|
206 | (11) |
|
6.4.1 Steering Field Sampling |
|
|
206 | (7) |
|
6.4.2 Support Vector Machine MuSiC |
|
|
213 | (4) |
|
6.5 Neural Networks for Direction of Arrival |
|
|
217 | (22) |
|
|
217 | (2) |
|
6.5.2 Backpropagation Neural Network |
|
|
219 | (3) |
|
6.5.3 Forward-Propagation Neural Network |
|
|
222 | (4) |
|
6.5.4 Autoencoder Framework for DOA Estimation with Array Imperfections |
|
|
226 | (4) |
|
6.5.5 Deep Learning for DOA Estimation with Random Arrays |
|
|
230 | (5) |
|
|
235 | (4) |
|
|
239 | (32) |
|
|
239 | (1) |
|
7.2 Fundamentals of Beamforming |
|
|
240 | (6) |
|
|
240 | (1) |
|
7.2.2 Digital Beamforming/Precoding |
|
|
241 | (2) |
|
|
243 | (3) |
|
7.3 Conventional Beamforming |
|
|
246 | (4) |
|
7.3.1 Beamforming with Spatial Reference |
|
|
246 | (3) |
|
7.3.2 Beamforming with Temporal Reference |
|
|
249 | (1) |
|
7.4 Support Vector Machine Beamformer |
|
|
250 | (4) |
|
7.5 Beamforming with Kernels |
|
|
254 | (6) |
|
7.5.1 Kernel Array Processors with Temporal Reference |
|
|
254 | (2) |
|
7.5.2 Kernel Array Processor with Spatial Reference |
|
|
256 | (4) |
|
|
260 | (2) |
|
7.7 Hybrid Beamforming with Q-Learning |
|
|
262 | (9) |
|
|
267 | (4) |
|
8 Computational Electromagnetics |
|
|
271 | (26) |
|
|
271 | (1) |
|
8.2 Finite-Difference Time Domain |
|
|
272 | (8) |
|
8.2.1 Deep Learning Approach |
|
|
273 | (7) |
|
8.3 Finite-Difference Frequency Domain |
|
|
280 | (6) |
|
8.3.1 Deep Learning Approach |
|
|
283 | (3) |
|
8.4 Finite Element Method |
|
|
286 | (4) |
|
8.4.1 Deep Learning Approach |
|
|
287 | (3) |
|
|
290 | (7) |
|
8.5.1 Nonlinear Electromagnetic Inverse Scattering Using DeepNIS |
|
|
292 | (3) |
|
|
295 | (2) |
|
9 Reconfigurable Antennas and Cognitive Radio |
|
|
297 | (22) |
|
|
297 | (1) |
|
9.2 Basic Cognitive Radio Architecture |
|
|
298 | (1) |
|
9.3 Reconfiguration Mechanisms in Reconfigurable Antennas |
|
|
299 | (1) |
|
|
299 | (16) |
|
9.4.1 Reconfigurable Fractal Antennas |
|
|
300 | (4) |
|
9.4.2 Pattern Reconfigurable Microstrip Antenna |
|
|
304 | (3) |
|
9.4.3 Star Reconfigurable Antenna |
|
|
307 | (2) |
|
9.4.4 Reconfigurable Wideband Antenna |
|
|
309 | (3) |
|
9.4.5 Frequency Reconfigurable Antenna |
|
|
312 | (3) |
|
9.5 Machine Learning Implementation on Hardware |
|
|
315 | (1) |
|
|
316 | (3) |
|
|
316 | (3) |
About the Authors |
|
319 | (2) |
Index |
|
321 | |