Muutke küpsiste eelistusi

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 1620, 2019, Proceedings, Part III 2020 ed. [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 804 pages, kõrgus x laius: 235x155 mm, kaal: 1252 g, 222 Illustrations, color; 157 Illustrations, black and white; XXVIII, 804 p. 379 illus., 222 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 11908
  • Ilmumisaeg: 01-May-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030461327
  • ISBN-13: 9783030461324
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 804 pages, kõrgus x laius: 235x155 mm, kaal: 1252 g, 222 Illustrations, color; 157 Illustrations, black and white; XXVIII, 804 p. 379 illus., 222 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 11908
  • Ilmumisaeg: 01-May-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030461327
  • ISBN-13: 9783030461324
Teised raamatud teemal:
The three volume proceedings LNAI 11906 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019.The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track.





The contributions were organized in topical sections named as follows:





Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization.





Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing.





Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track.

Reinforcement Learning and Bandits.- Ranking.- Applied Data Science: Computer Vision and Explanation.- Applied Data Science: Healthcare.- Applied Data Science: E-commerce, Finance, and Advertising.- Applied Data Science: Rich Data.- Applied Data Science: Applications.- Demo Track.