Muutke küpsiste eelistusi

Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 1st ed. 2021 [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 704 pages, kõrgus x laius: 235x155 mm, kaal: 1092 g, 232 Illustrations, color; 16 Illustrations, black and white; XVIII, 704 p. 248 illus., 232 illus. in color., 1 Paperback / softback
  • Sari: Image Processing, Computer Vision, Pattern Recognition, and Graphics 12966
  • Ilmumisaeg: 27-Sep-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030875881
  • ISBN-13: 9783030875886
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 704 pages, kõrgus x laius: 235x155 mm, kaal: 1092 g, 232 Illustrations, color; 16 Illustrations, black and white; XVIII, 704 p. 248 illus., 232 illus. in color., 1 Paperback / softback
  • Sari: Image Processing, Computer Vision, Pattern Recognition, and Graphics 12966
  • Ilmumisaeg: 27-Sep-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030875881
  • ISBN-13: 9783030875886
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.*The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.





*The workshop was held virtually.
Contrastive Representations for Continual Learning of Fine-grained
Histology Images.-