Muutke küpsiste eelistusi

Machining Dynamics: Frequency Response to Improved Productivity 2009 ed. [Multiple-component retail product]

  • Formaat: Multiple-component retail product, 304 pages, kõrgus x laius: 235x155 mm, kaal: 1380 g, 47 Tables, black and white; XI, 304 p. With CD-ROM., 1 Item
  • Ilmumisaeg: 02-Dec-2008
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387096442
  • ISBN-13: 9780387096445
Teised raamatud teemal:
  • Multiple-component retail product
  • Hind: 171,99 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Multiple-component retail product, 304 pages, kõrgus x laius: 235x155 mm, kaal: 1380 g, 47 Tables, black and white; XI, 304 p. With CD-ROM., 1 Item
  • Ilmumisaeg: 02-Dec-2008
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387096442
  • ISBN-13: 9780387096445
Teised raamatud teemal:
"Machining dynamics: Frequency response to improved productivity" will train engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book is arranged such that the steps required to improve machining productivity through chatter avoidance and reduced surface location error (forced vibrations resulting in part geometric errors) are clearly evident.The following topics are covered in detail: modal analysis, including experimental methods, to obtain the tool point frequency response function; descriptions of turning and milling, including force modeling, time domain simulation, stability lobe diagram algorithms, and surface location error calculation for milling; and receptance coupling methods for tool point frequency response prediction, including beam theory. Numerical examples are included, as well as the MATLAB code used to develop the figures.

This book will train engineers and students in the practical application of machining dynamics, with a particular focus on milling. It provides the necessary information in a manner that enables rapid implementation.
Introduction
1(6)
The big picture
2(1)
A Brief Reviewe
3(1)
Roadmap
4(3)
References
5(2)
Modal Analysis
7(52)
Single Degree of Freedom Free Vibration
7(9)
Free Vibration
8(1)
Forced Vibration
8(1)
Self-Excited Vibration
9(4)
Viscous Damping
13(1)
Coulomb Damping
13(1)
Solid Damping
14(2)
Single Degree of Freedom Forced Vibration
16(7)
Two Degree of Freedom Free Vibration
23(11)
Two Degree of Freedom Forced Vibration
34(7)
Modal Analysis
34(5)
Complex Matrix Inversion
39(2)
System Identification
41(11)
Modal Fitting
41(6)
Model Definition
47(1)
Modal Truncation
48(4)
Modal Testing Equipment
52(2)
Force Input
52(1)
Vibration Measurement
53(1)
Measurement Uncertainties
54(5)
Exercises
55(2)
References
57(2)
Turning Dynamics
59(40)
Turning Description
59(3)
Regenerative Chatter in Turning
62(4)
Stability Lobe Diagrams
66(10)
The Oriented FRF
76(9)
Turning Time-Domain Simulation
85(14)
Chip Thickness Calculation
85(2)
Force Calculation
87(1)
Displacement Calculation
88(6)
Multiple Degree of Freedom Modeling
94(2)
Exercises
96(2)
References
98(1)
Milling Dynamics
99(74)
Milling Description
99(14)
Tooth Passing Frequency
108(2)
Multiple Teeth in the Cut
110(3)
Regenerative Chatter in Milling
113(4)
Stability Lobe Diagrams
117(19)
Average Tooth Angle Approach
117(1)
Oriented FRF
118(8)
Fourier Series Approach
126(10)
Milling Time-Domain Simulation with Straight Teeth
136(11)
Chip Thickness Calculation
136(3)
Force Calculation
139(1)
Displacement Calculation
140(1)
Simulation Summary and Implementation
140(7)
Milling Time-Domain Simulation with Helical Teeth
147(10)
Ball Milling Time-Domain Simulation with Helical Teeth
157(4)
Experimental Cutting Force Coefficients
161(12)
Updated Force Model
161(4)
Linear Regression
165(2)
Experimental Techniques
167(2)
Exercises
169(1)
References
170(3)
Surface Location Error in Milling
173(26)
Surface Location Error
173(3)
Frequency-Domain Solution
176(13)
Fourier Force Model
176(9)
Variation in Surface Location Error with Axial Location
185(3)
Combining Stability and Surface Location Error in a Single Diagram
188(1)
Cycloidal Tool Path Time-Domain Simulation
189(10)
Exercises
197(1)
References
197(2)
Special Topics in Milling
199(36)
Frequency Content of Milling Signals
199(14)
Runout
213(6)
Simulation Modification
217(2)
Variable Teeth Spacing
219(5)
Simulation Updating
221(3)
Low Radial Immersion Milling
224(4)
Uncertainty Propagation
228(7)
Exercises
230(1)
References
231(4)
Tool Point Dynamics Prediction
235(54)
Motivation
235(1)
Basic Receptance Coupling
236(19)
Two Component Rigid Coupling
237(4)
Two Component Flexible Coupling
241(7)
Two Component Flexible, Damped Coupling
248(3)
Modal Analysis
251(1)
Complex Matrix Inversion
252(1)
Receptance Coupling
253(2)
Advanced Receptance Coupling
255(5)
Beam Receptances
260(8)
Assembly Receptance Predictions
268(7)
Tool-Holder-Spindle-Machine Receptance Predictions
275(14)
Spindle-Machine Receptances
279(3)
Summary
282(2)
Exercises
284(1)
References
285(4)
Appendix A 289(4)
Appendix B 293(2)
Appendix C 295(2)
Index 297