Muutke küpsiste eelistusi

Materials with Memory: Initial-Boundary Value Problems for Constitutive Equations with Internal Variables 1998 ed. [Pehme köide]

  • Formaat: Paperback / softback, 170 pages, kõrgus x laius: 235x155 mm, kaal: 580 g, X, 170 p., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 1682
  • Ilmumisaeg: 19-Feb-1998
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540640665
  • ISBN-13: 9783540640660
  • Pehme köide
  • Hind: 34,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 40,94 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 170 pages, kõrgus x laius: 235x155 mm, kaal: 580 g, X, 170 p., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 1682
  • Ilmumisaeg: 19-Feb-1998
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540640665
  • ISBN-13: 9783540640660
This book contributes to the mathematical theory of systems of differential equations consisting of the partial differential equations resulting from conservation of mass and momentum, and of constitutive equations with internal variables. The investigations are guided by the objective of proving existence and uniqueness, and are based on the idea of transforming the internal variables and the constitutive equations. A larger number of constitutive equations from the engineering sciences are presented. The book is therefore suitable not only for specialists, but also for mathematicians seeking for an introduction in the field, and for engineers with a sound mathematical background.

Muu info

Springer Book Archives
1 Introduction
1(6)
2 Initial-Boundary Value Problems for the Inelastic Behavior of Metals
7(16)
2.1 Formulation of the Initial-Boundary Value Problems
7(4)
2.2 Examples of Constitutive Equations
11(12)
3 Constitutive Equations of Monotone Type and Generalized Standard Materials
23(22)
3.1 Energy Estimate and Classes of Constitutive Equations
23(4)
3.2 Uniqueness and Existence for Dynamic and Quasi-Static Problems: Basic Ideas of the Proofs and Results in the Literature
27(4)
3.3 Examples of Constitutive Equations Revisited
31(10)
3.4 A Criterion for Monotone Type
41(4)
4 Existence of Solutions for Constitutive Equations of Monotone Type
45(12)
4.1 Formulation of the Problem as a First Order Evolution Equation
45(3)
4.2 Maximality of the Evolution Operator
48(8)
4.3 Existence for the Dynamic Problem
56(1)
5 Transformation of Interior Variables
57(18)
5.1 Transformation Fields
57(3)
5.2 Properties of the Transformation: Restrictions Imposed by the Epsilon-Independence of the Transformation Field and Invariance under Linear Transformations
60(5)
5.3 The Class of Constitutive Equations Transformable to Monotone Type
65(2)
5.4 The Class of Constitutive Equations Transformable to Gradient Type
67(2)
5.5 The Class of Constitutive Equations Transformable to Monotone-Gradient Type
69(6)
6 Classification Conditions
75(24)
6.1 Transformations which Leave the Class of Pre-Monotone Equations Invariant
76(11)
6.2 Transformation of Pre-Monotone Equations to Gradient Type
87(12)
7 Transformation of Rate Independent Constitutive Equations
99(18)
7.1 Transformation of Constitutive Equations Containing Set-Valued Operators
99(3)
7.2 Transformation to Monotone-Gradient Type
102(4)
7.3 Example 1: One Variable of Isotropic Hardening
106(5)
7.4 Example 2: Several Variables of Isotropic Hardening
111(6)
8 Application of the Theory to Engineering Models
117(20)
8.1 Pre-Monotone Type of the Model
117(2)
8.2 Conditions for Monotone Type of the Model
119(6)
8.3 Pre-Monotone Type Preserving Transformations of the Model
125(1)
8.4 Transformation to Gradient Type
126(3)
8.5 Transformation to Monotone Type and to Monotone-Gradient Type
129(8)
9 Open Problems and Related Results
137(6)
9.1 Transformation Fields Depending on Epsilon and Zeta
137(1)
9.2 History Functionals
138(1)
9.3 Hysteresis Operators. Existence Theory in L(p)
139(3)
9.4 Constitutive Equations Defining Continuous Operators in Banach Spaces
142(1)
A The Second Law of Thermodynamics and the Dissipation Inequality
143(10)
A.1 Consequences of the Second Law for the Constitutive Equations
143(6)
A.2 The Free Energy
149(4)
Bibliography 153(12)
Index 165