Muutke küpsiste eelistusi

Mathematical Analysis of Complex Cellular Activity 1st ed. 2015 [Pehme köide]

  • Formaat: Paperback / softback, 107 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 25 Illustrations, color; 12 Illustrations, black and white; XII, 107 p. 37 illus., 25 illus. in color., 1 Paperback / softback
  • Sari: Frontiers in Applied Dynamical Systems: Reviews and Tutorials 1
  • Ilmumisaeg: 23-Oct-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319181130
  • ISBN-13: 9783319181134
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 107 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 25 Illustrations, color; 12 Illustrations, black and white; XII, 107 p. 37 illus., 25 illus. in color., 1 Paperback / softback
  • Sari: Frontiers in Applied Dynamical Systems: Reviews and Tutorials 1
  • Ilmumisaeg: 23-Oct-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319181130
  • ISBN-13: 9783319181134
Teised raamatud teemal:
This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently.

The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes.

Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells

Review 2: Vivien Kirk, James Sneyd: Nonlinear Dynamics of Calcium
1 Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells
1(52)
Richard Bertram
Joel Tabak
Wondimu Teka
Theodore Vo
Martin Wechselberger
1 Introduction
2(3)
2 The Lactotroph/Somatotroph Model
5(3)
3 The Standard Fast/Slow Analysis
8(5)
4 The 1-Fast/2-Slow Analysis
13(15)
4.1 Reduced, Desingularized, and Layer Systems
13(3)
4.2 Folded Singularities and the Origin of Pseudo-Plateau Bursting
16(3)
4.3 Phase-Plane Analysis of the Desingularized System
19(2)
4.4 Bursting Boundaries
21(2)
4.5 Spike-Adding Transitions
23(3)
4.6 Prediction Testing on Real Cells
26(2)
5 Relationship Between the Fast/Slow Analysis Structures
28(7)
5.1 The fc → 0 Limit
30(1)
5.2 The Cm → 0 Limit
31(2)
5.3 The Double Limit
33(2)
6 Store-Generated Bursting in Stimulated Gonadotrophs
35(11)
6.1 Closed-Cell Dynamics
35(5)
6.2 Open-Cell Dynamics
40(3)
6.3 Store-Generated Bursting
43(3)
7 Conclusion
46(1)
8 Appendix
46(7)
8.1 The Chay-Keizer Model
46(1)
8.2 The Lactotroph Model with an A-Type K+ Current
47(1)
References
48(5)
2 The Nonlinear Dynamics of Calcium
53(47)
Vivien Kirk
James Sneyd
1 Introduction
53(11)
1.1 Some background physiology
56(5)
1.2 Overview of calcium models
61(1)
1.3 Stochastic versus deterministic models
62(1)
1.4 Excitability
63(1)
2 ODE models
64(11)
2.1 Calcium buffering
66(2)
2.2 Modelling the calcium fluxes
68(4)
2.3 Model classification
72(1)
2.4 A simple example: the combined model
73(2)
3 Bifurcation structure of ODE models
75(12)
3.1 Fast-slow reductions
78(6)
3.2 Pulse experiments and GSPT
84(3)
4 Merging calcium dynamics and membrane electrical excitability
87(1)
5 Calcium diffusion and waves
88(12)
5.1 Basic equations
88(2)
5.2 Fire-diffuse-fire models
90(1)
5.3 Another simple example
91(1)
5.4 CU systems
92(3)
5.5 Calcium excitability and comparison to the FitzHugh-Nagumo equations
95(3)
5.6 The effects on wave propagation of calcium buffers
98(2)
6 Conclusion
100(1)
Appendix 100(1)
References 100
Professor Richard Bertram is a Mathematics Professor at Florida State University. His current academic interests include the intersection between biology and mathematics.

Professor James Sneyd is a Professor in Applied Mathematics at The University of Auckland and his current research interests include mathematical physiology and nonlinear dynamical systems.