Muutke küpsiste eelistusi

On Mathematical Explanations of Empirical Phenomena: Indispensability, Number Theory, and Mathematical Counterfactual Dependence [Kõva köide]

  • Formaat: Hardback, 129 pages, kõrgus x laius: 235x155 mm, VIII, 129 p., 1 Hardback
  • Sari: Synthese Library 517
  • Ilmumisaeg: 02-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031988590
  • ISBN-13: 9783031988592
Teised raamatud teemal:
  • Kõva köide
  • Hind: 85,76 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 100,89 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 129 pages, kõrgus x laius: 235x155 mm, VIII, 129 p., 1 Hardback
  • Sari: Synthese Library 517
  • Ilmumisaeg: 02-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031988590
  • ISBN-13: 9783031988592
Teised raamatud teemal:

This book addresses contemporary issues in the philosophy of mathematics that deal with the role of mathematics in explanations of empirical phenomena. It brings together various debates, such as on indispensability, number theory, abstraction principles, and counterpossibles, which turn out to be highly relevant for evaluating the role of the mathematics in question. The book consists of two parts and has a general introduction of the broader context in which the discussions take place. The first part focuses on the possibility of extracting an argument for mathematical realism in relation to the explanatory indispensability argument, and shows that circularity looms unless a controversial abstraction principle is assumed. It also offers an alternative non-mathematical explanation that makes use of relative interpretation. The second part focuses on the possibility of bringing out the explanatory role of mathematics counterfactually, and shows that, due to the necessary nature of mathematics, any proposal should take into account discussions on the knowledge and the structure of numbers. As a whole, this book is of great use to academic research in the field of philosophy of mathematics.

1 Introduction.- Part I: The Indispensability of Mathematics.- 2 The
enhanced indispensability argument.- 3 Objections.- 4 Circularity and
interpretability.- 5 Conclusion of Part I.- 6 Counterfactual explanation and
mathematics.- 7 A number-theoretic counterpossible.- 8 De Re knowledge of
numbers.- 9 Conclusion of Part II.- 10 Epilogue.- Bibliography.
Lars Arthur Tump is a research fellow at KU Leuvens Institute of Philosophy and a member of its Centre for Logic and Philosophy of Science. His areas of expertise include the philosophy of mathematics, logic, and science.