|
|
xv |
|
Preface |
|
xix |
|
A SET THEORY |
|
1 |
(74) |
|
Basic Concepts of Set Theory |
|
|
3 |
(24) |
|
|
3 |
(1) |
|
|
4 |
(4) |
|
Set-theoretic identity and cardinality |
|
|
8 |
(2) |
|
|
10 |
(1) |
|
|
11 |
(1) |
|
|
11 |
(4) |
|
Difference and complement |
|
|
15 |
(2) |
|
|
17 |
(10) |
|
|
23 |
(4) |
|
|
27 |
(12) |
|
Ordered pairs and Cartesian products |
|
|
27 |
(1) |
|
|
28 |
(2) |
|
|
30 |
(3) |
|
|
33 |
(6) |
|
|
36 |
(3) |
|
|
39 |
(16) |
|
Reflexivity, symmetry, transitivity, and connectedness |
|
|
39 |
(4) |
|
|
43 |
(1) |
|
Properties of inverses and complements |
|
|
44 |
(1) |
|
Equivalence relations and partitions |
|
|
45 |
(2) |
|
|
47 |
(8) |
|
|
51 |
(4) |
|
|
55 |
(20) |
|
Equivalent sets and cardinality |
|
|
55 |
(3) |
|
|
58 |
(4) |
|
|
62 |
(8) |
|
|
70 |
(5) |
|
|
71 |
(4) |
Appendix A: Set-theoretic Reconstruction of Number Systems |
|
75 |
(10) |
|
|
75 |
(3) |
|
A.2 Extension to the set of all integers |
|
|
78 |
(2) |
|
A.3 Extension to the set of all rational numbers |
|
|
80 |
(1) |
|
A.4 Extension to the set of all real numbers |
|
|
81 |
(4) |
|
|
83 |
(2) |
B LOGIC AND FORMAL SYSTEMS |
|
85 |
(152) |
|
Basic Concepts of Logic and Formal Systems |
|
|
87 |
(10) |
|
Formal systems and models |
|
|
87 |
(4) |
|
Natural languages and formal languages |
|
|
91 |
(1) |
|
|
92 |
(1) |
|
About statement logic and predicate logic |
|
|
93 |
(4) |
|
|
97 |
(38) |
|
|
97 |
(2) |
|
Semantics: Truth values and truth tables |
|
|
99 |
(5) |
|
|
99 |
(1) |
|
|
100 |
(1) |
|
|
101 |
(1) |
|
|
102 |
(1) |
|
|
103 |
(1) |
|
Tautologies, contradictions and contingencies |
|
|
104 |
(4) |
|
Logical equivalence, logical consequence and laws |
|
|
108 |
(4) |
|
|
112 |
(9) |
|
|
118 |
(2) |
|
|
120 |
(1) |
|
|
121 |
(14) |
|
|
128 |
(7) |
|
|
135 |
(44) |
|
|
135 |
(5) |
|
|
140 |
(6) |
|
Quantifier laws and prenex normal form |
|
|
146 |
(6) |
|
|
152 |
(11) |
|
|
163 |
(5) |
|
Formal and informal proofs |
|
|
168 |
(2) |
|
Informal style in mathematical proofs |
|
|
170 |
(9) |
|
|
173 |
(6) |
|
Formal Systems, Axiomatization, and Model Theory |
|
|
179 |
(58) |
|
The syntactic side of formal systems |
|
|
179 |
(4) |
|
|
179 |
(4) |
|
Axiomatic systems and derivations |
|
|
183 |
(7) |
|
Extended axiomatic systems |
|
|
186 |
(4) |
|
|
190 |
(2) |
|
Peano's axioms and proof by induction |
|
|
192 |
(6) |
|
The semantic side of formal systems: model theory |
|
|
198 |
(19) |
|
|
198 |
(2) |
|
Consistency, completeness, and independence |
|
|
200 |
(2) |
|
|
202 |
(2) |
|
An elementary formal system |
|
|
204 |
(2) |
|
Axioms for ordering relations |
|
|
206 |
(5) |
|
Axioms for string concatenation |
|
|
211 |
(3) |
|
Models for Peano's axioms |
|
|
214 |
(1) |
|
Axiomatization of set theory |
|
|
215 |
(2) |
|
|
217 |
(20) |
|
An axiomatization of statement logic |
|
|
217 |
(3) |
|
Consistency and independence proofs |
|
|
220 |
(3) |
|
An axiomatization of predicate logic |
|
|
223 |
(2) |
|
About completeness proofs |
|
|
225 |
(2) |
|
|
227 |
(1) |
|
Godel's incompleteness theorems |
|
|
228 |
(1) |
|
|
229 |
(3) |
|
|
232 |
(5) |
Appendix B-I: Alternative Notations and Connectives |
|
237 |
(2) |
Appendix B-II: Kleene's Three-Valued Logic |
|
239 |
(6) |
|
|
243 |
(2) |
C ALGEBRA |
|
245 |
(68) |
|
Basic Concepts of Algebra |
|
|
247 |
(8) |
|
|
247 |
(1) |
|
|
248 |
(1) |
|
|
249 |
(2) |
|
|
251 |
(4) |
|
|
253 |
(2) |
|
|
255 |
(20) |
|
|
255 |
(6) |
|
Subgroups, semigroups and monoids |
|
|
261 |
(3) |
|
|
264 |
(5) |
|
|
269 |
(6) |
|
|
271 |
(4) |
|
|
275 |
(20) |
|
Posets, duality and diagrams |
|
|
275 |
(3) |
|
Lattices, semilattices and sublattices |
|
|
278 |
(5) |
|
|
283 |
(2) |
|
|
285 |
(3) |
|
Complemented, distributive and modular lattices |
|
|
288 |
(7) |
|
|
293 |
(2) |
|
Boolean and Heyting Algebras |
|
|
295 |
(18) |
|
|
295 |
(3) |
|
|
298 |
(1) |
|
|
299 |
(2) |
|
|
301 |
(3) |
|
|
304 |
(9) |
|
|
307 |
(2) |
|
|
309 |
(4) |
D ENGLISH AS A FORMAL LANGUAGE |
|
313 |
(116) |
|
|
315 |
(56) |
|
|
315 |
(21) |
|
A compositional account of statement logic |
|
|
317 |
(4) |
|
A compositional account of predicate logic |
|
|
321 |
(10) |
|
Natural language and compositionality |
|
|
331 |
(5) |
|
|
336 |
(35) |
|
|
336 |
(3) |
|
The syntax and semantics of λ-abstraction |
|
|
339 |
(2) |
|
|
341 |
(5) |
|
|
346 |
(3) |
|
|
349 |
(16) |
|
|
365 |
(6) |
|
|
371 |
(30) |
|
Determiners and quantifiers |
|
|
371 |
(2) |
|
Conditions on quantifiers |
|
|
373 |
(5) |
|
Properties of determiners and quantifiers |
|
|
378 |
(10) |
|
|
388 |
(4) |
|
Context and quantification |
|
|
392 |
(9) |
|
|
397 |
(4) |
|
|
401 |
(28) |
|
|
401 |
(6) |
|
|
407 |
(5) |
|
Indices and accessibility relations |
|
|
412 |
(9) |
|
|
421 |
(4) |
|
|
425 |
(4) |
|
|
427 |
(2) |
E LANGUAGES, GRAMMARS, AND AUTOMATA |
|
429 |
(130) |
|
|
431 |
(22) |
|
Languages, grammars and automata |
|
|
431 |
(4) |
|
|
435 |
(2) |
|
|
437 |
(7) |
|
|
438 |
(1) |
|
|
439 |
(2) |
|
|
441 |
(3) |
|
|
444 |
(4) |
|
|
448 |
(3) |
|
|
451 |
(2) |
|
Finite Automata, Regular Languages and Type 3 Grammars |
|
|
453 |
(32) |
|
|
453 |
(9) |
|
State diagrams of finite automata |
|
|
455 |
(1) |
|
Formal definition of deterministic finite automata |
|
|
455 |
(3) |
|
Non-deterministic finite automata |
|
|
458 |
(2) |
|
Formal definition of non-deterministic finite automata |
|
|
460 |
(1) |
|
Equivalence of deterministic and non-deterministic finite automata |
|
|
460 |
(2) |
|
|
462 |
(9) |
|
Pumping Theorem for fal's |
|
|
468 |
(3) |
|
Type 3 grammars and finite automaton languages |
|
|
471 |
(14) |
|
Properties of regular languages |
|
|
475 |
(2) |
|
Inadequacy of right-linear grammars for natural languages |
|
|
477 |
(3) |
|
|
480 |
(5) |
|
Pushdown Automata, Context Free Grammars and Languages |
|
|
485 |
(20) |
|
|
485 |
(5) |
|
Context free grammars and languages |
|
|
490 |
(2) |
|
Pumping Theorem for cfl's |
|
|
492 |
(3) |
|
Closure properties of context free languages |
|
|
495 |
(3) |
|
Decidability questions for context free languages |
|
|
498 |
(3) |
|
Are natural languages context free? |
|
|
501 |
(4) |
|
|
503 |
(2) |
|
Turing Machines, Recursively Enumerable Languages and Type 0 Grammars |
|
|
505 |
(22) |
|
|
505 |
(7) |
|
|
508 |
(4) |
|
Equivalent formulations of Turing machines |
|
|
512 |
(1) |
|
Unrestricted grammars and Turing machines |
|
|
513 |
(2) |
|
|
515 |
(2) |
|
Recursive versus recursively enumerable sets |
|
|
517 |
(1) |
|
The universal Turing machine |
|
|
518 |
(2) |
|
The Halting Problem for Turing machines |
|
|
520 |
(7) |
|
|
523 |
(4) |
|
Linear Bounded Automata, Context Sensitive Languages and Type 1 Grammars |
|
|
527 |
(6) |
|
|
527 |
(2) |
|
Lba's and context sensitive grammars |
|
|
528 |
(1) |
|
Context sensitive languages and recursive sets |
|
|
529 |
(2) |
|
Closure and decision properties |
|
|
531 |
(2) |
|
|
532 |
(1) |
|
Languages Between Context Free and Context Sensitive |
|
|
533 |
(26) |
|
|
534 |
(12) |
|
|
540 |
(6) |
|
|
546 |
(1) |
|
|
547 |
(6) |
|
Transformational Grammars |
|
|
553 |
(6) |
Appendix E-I: The Chomsky Hierarchy |
|
559 |
(4) |
Appendix E-II: Semantic Automata |
|
563 |
(10) |
|
|
570 |
(1) |
|
|
571 |
(2) |
Solutions to Selected Exercises |
|
573 |
(62) |
|
|
573 |
(2) |
|
|
575 |
(1) |
|
|
576 |
(1) |
|
|
577 |
(2) |
|
|
579 |
(3) |
|
|
582 |
(5) |
|
|
587 |
(7) |
|
|
594 |
(3) |
|
|
597 |
(4) |
|
|
601 |
(1) |
|
|
602 |
(4) |
|
|
606 |
(2) |
|
|
608 |
(2) |
|
|
610 |
(4) |
|
|
614 |
(2) |
|
|
616 |
(3) |
|
|
619 |
(1) |
|
|
620 |
(6) |
|
|
626 |
(3) |
|
|
629 |
(1) |
|
|
630 |
(1) |
|
|
631 |
(1) |
|
|
632 |
(3) |
Bibliography |
|
635 |
(12) |
Index |
|
647 |
|