Preface |
|
xv | |
|
|
xxv | |
Greek Symbols |
|
xxxiii | |
|
|
1 | (44) |
|
|
3 | (1) |
|
|
3 | (5) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (4) |
|
|
8 | (1) |
|
1.3.2 Permutation Mappings |
|
|
9 | (1) |
|
1.3.3 Permutation Matrices |
|
|
10 | (1) |
|
1.3.4 Unary and Binary Operations |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.4 Basic Number-Theoretic Concepts |
|
|
12 | (8) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
1.4.4 Greatest Common Divisor |
|
|
13 | (4) |
|
1.4.5 Continued Fractions |
|
|
17 | (3) |
|
1.5 Congruence Arithmetic |
|
|
20 | (13) |
|
1.5.1 Chinese Remainder Theorem |
|
|
23 | (1) |
|
|
24 | (2) |
|
1.5.3 Euler's Phi-Function |
|
|
26 | (2) |
|
|
28 | (2) |
|
|
30 | (2) |
|
|
32 | (1) |
|
1.6 Cyclotomic Polynomials |
|
|
33 | (2) |
|
|
35 | (2) |
|
1.7.1 Principle of Inclusion and Exclusion |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (5) |
|
|
42 | (3) |
|
|
45 | (90) |
|
|
47 | (1) |
|
|
47 | (16) |
|
|
48 | (4) |
|
|
52 | (1) |
|
2.2.3 Subrings and Ideals |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
57 | (5) |
|
|
62 | (1) |
|
|
63 | (3) |
|
2.4 Vector Spaces over Fields |
|
|
66 | (4) |
|
|
70 | (1) |
|
2.6 Structure of Finite Fields |
|
|
71 | (15) |
|
|
73 | (3) |
|
2.6.2 Minimal Polynomials |
|
|
76 | (3) |
|
2.6.3 Irreducible Polynomials |
|
|
79 | (1) |
|
2.6.4 Factoring Polynomials |
|
|
80 | (1) |
|
|
81 | (5) |
|
2.7 Roots of Unity in Finite Field |
|
|
86 | (1) |
|
|
87 | (13) |
|
2.8.1 Elliptic Curves over Real Fields |
|
|
90 | (5) |
|
2.8.2 Elliptic Curves over Finite Fields |
|
|
95 | (1) |
|
2.8.3 Elliptic Curves over Zp, p > 3 |
|
|
96 | (3) |
|
2.8.4 Elliptic Curves over GF2n |
|
|
99 | (1) |
|
|
100 | (17) |
|
2.9.1 Basics of Hyperelliptic Curves |
|
|
100 | (2) |
|
2.9.2 Polynomials, Rational Functions, Zeros, and Poles |
|
|
102 | (3) |
|
|
105 | (6) |
|
2.9.4 Mumford Representation of Divisors |
|
|
111 | (6) |
|
2.9.5 Order of the Jacobian |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (14) |
|
|
132 | (3) |
|
3 Matrices and Determinants |
|
|
135 | (68) |
|
|
137 | (1) |
|
|
137 | (7) |
|
3.2.1 Basic Matrix Operations |
|
|
139 | (1) |
|
3.2.2 Different Types of Matrices |
|
|
140 | (2) |
|
|
142 | (2) |
|
|
144 | (4) |
|
|
144 | (2) |
|
3.3.2 Vandermonde Determinant |
|
|
146 | (1) |
|
3.3.3 Binet-Cauchy Theorem |
|
|
146 | (2) |
|
|
148 | (4) |
|
|
148 | (1) |
|
3.4.2 Adjoint of a Square Matrix |
|
|
149 | (1) |
|
3.4.3 Nullity of a Matrix |
|
|
149 | (1) |
|
3.4.4 System of Linear Equations |
|
|
150 | (1) |
|
3.4.5 Matrix Inversion Lemma |
|
|
151 | (1) |
|
3.4.6 Tensor Product of Matrices |
|
|
151 | (1) |
|
3.5 Matrices as Linear Transformations |
|
|
152 | (3) |
|
3.6 Spectral Analysis of Matrices |
|
|
155 | (3) |
|
3.7 Hermitian Matrices and Their Eigenstructures |
|
|
158 | (3) |
|
3.8 Perron-Frobenius Theory |
|
|
161 | (4) |
|
|
162 | (1) |
|
3.8.2 Nonnegative Matrices |
|
|
163 | (2) |
|
3.8.3 Stochastic Matrices |
|
|
165 | (1) |
|
3.9 Singular Value Decomposition |
|
|
165 | (3) |
|
|
168 | (3) |
|
|
171 | (6) |
|
3.11.1 Gaussian Orthogonal Ensemble |
|
|
171 | (2) |
|
3.11.2 Wigner's Semicircle Law |
|
|
173 | (4) |
|
|
177 | (1) |
|
|
177 | (24) |
|
|
201 | (2) |
|
|
203 | (40) |
|
|
205 | (1) |
|
4.2 Undirected and Directed Graphs |
|
|
205 | (4) |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (2) |
|
4.4 Graph Operations, Representations, and Transformations |
|
|
211 | (4) |
|
|
211 | (1) |
|
4.4.2 Graph Representations |
|
|
212 | (2) |
|
4.4.3 Graph Transformations |
|
|
214 | (1) |
|
4.5 Plane and Planar Graphs |
|
|
215 | (3) |
|
4.6 Some Useful Observations |
|
|
218 | (2) |
|
|
220 | (6) |
|
4.7.1 Matrix-Tree Theorem |
|
|
220 | (2) |
|
4.7.2 Numerical Algorithm |
|
|
222 | (2) |
|
4.7.3 Number of Labeled Trees |
|
|
224 | (1) |
|
4.7.4 Computation of Number of Spanning Trees |
|
|
225 | (1) |
|
4.7.5 Generation of Spanning Trees of a Graph |
|
|
225 | (1) |
|
4.8 The K-core, K-crust, and K-shell of a Graph |
|
|
226 | (2) |
|
|
228 | (4) |
|
4.10 Spectral Analysis of Graphs |
|
|
232 | (3) |
|
4.10.1 Spectral Analysis via Adjacency Matrix |
|
|
232 | (3) |
|
4.10.2 Laplacian Spectral Analysis |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (5) |
|
|
241 | (2) |
|
|
243 | |
|
|
245 | (1) |
|
|
246 | (5) |
|
5.2.1 Requirements for an Axiomatic System |
|
|
246 | (1) |
|
5.2.2 Axiomatic Foundation of Euclidean Geometry |
|
|
247 | (2) |
|
5.2.3 Basic Definitions and Constructions |
|
|
249 | (2) |
|
|
251 | (3) |
|
5.4 Elementary Differential Geometry |
|
|
254 | (9) |
|
5.4.1 Mathematical Preliminaries |
|
|
254 | (2) |
|
|
256 | (1) |
|
5.4.3 Curves in Plane and Space |
|
|
257 | (6) |
|
5.5 Basics of Surface Geometry |
|
|
263 | (8) |
|
|
263 | (2) |
|
5.5.2 First Fundamental Form |
|
|
265 | (2) |
|
5.5.3 Conformal Mapping of Surfaces |
|
|
267 | (1) |
|
5.5.4 Second Fundamental Form |
|
|
268 | (3) |
|
5.6 Properties of Surfaces |
|
|
271 | (13) |
|
5.6.1 Curves on a Surface |
|
|
272 | (6) |
|
5.6.2 Local Isometry of Surfaces |
|
|
278 | (1) |
|
5.6.3 Geodesies on a Surface |
|
|
279 | (5) |
|
5.7 Prelude to Hyperbolic Geometry |
|
|
284 | (8) |
|
5.7.1 Surfaces of Revolution |
|
|
285 | (2) |
|
5.7.2 Constant Gaussian Curvature Surfaces |
|
|
287 | (1) |
|
|
288 | (1) |
|
5.7.4 A Conformal Mapping Perspective |
|
|
289 | (3) |
|
|
292 | (12) |
|
5.8.1 Upper Half-Plane Model |
|
|
293 | (2) |
|
5.8.2 Isometries of Upper Half-Plane Model |
|
|
295 | (2) |
|
5.8.3 Poincare Disc Model |
|
|
297 | (4) |
|
5.8.4 Surface of Different Constant Curvature |
|
|
301 | (1) |
|
|
301 | (1) |
|
5.8.6 Geometric Constructions |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
304 | (42) |
|
|
346 | |