Muutke küpsiste eelistusi

Mathematics for Digital Science 2: Digital Information [Kõva köide]

(Université de Picardie Jules Verne, France), (Université de Picardie Jules Verne, France)
  • Formaat: Hardback, 368 pages
  • Sari: ISTE Invoiced
  • Ilmumisaeg: 06-Jul-2025
  • Kirjastus: ISTE Ltd
  • ISBN-10: 1789451957
  • ISBN-13: 9781789451955
Teised raamatud teemal:
  • Formaat: Hardback, 368 pages
  • Sari: ISTE Invoiced
  • Ilmumisaeg: 06-Jul-2025
  • Kirjastus: ISTE Ltd
  • ISBN-10: 1789451957
  • ISBN-13: 9781789451955
Teised raamatud teemal:
Over the past century, advancements in computer science have consistently resulted from extensive mathematical work. Even today, innovations in the digital domain continue to be grounded in a strong mathematical foundation. To succeed in this profession, both today’s students and tomorrow’s computer engineers need a solid mathematical background.

The goal of this book series is to offer a solid foundation of the knowledge essential to working in the digital sector. Across three volumes, it explores fundamental principles, digital information, data analysis, and optimization. Whether the reader is pursuing initial training or looking to deepen their expertise, the Mathematics for Digital Science series revisits familiar concepts, helping them refresh and expand their knowledge while also introducing equally essential, newer topics.
Preface xi

Chapter 1 Representation of Numbers 1

1.1 Representation of numbers 2

1.1.1 Position numbering 2

1.1.2 The binary system 3

1.1.3 Octal system and hexadecimal system 6

1.2 Representation of numbers in a machine 8

1.2.1 Machine representation of negative numbers 8

1.2.2 Representation of rational numbers 12

Chapter 2 Media Representation 17

2.1 Character coding 17

2.2 Image coding 23

2.2.1 Representation of digital colors 23

2.2.2 Scanning an image 24

2.2.3 Image quality 24

2.3 Sound coding 26

2.4 Video coding 28

2.5 Tagging codes 29

2.5.1 Figures 29

2.5.2 Bank cards 30

2.5.3 Barcodes 32

2.5.4 QR codes 34

Chapter 3 Signals and Systems 47

3.1 Characteristics and varieties 47

3.1.1 Introduction 47

3.1.2 Periodicity 49

3.1.3 Noise 50

3.2 Fourier analysis 51

3.2.1 Fourier series expansion 51

3.2.2 Examples 52

3.2.3 Special cases 55

3.2.4 Other development writing 55

3.2.5 Power 56

3.3 Dirac distribution 58

3.4 Convolution 62

3.4.1 Definition 62

3.4.2 Dirac distribution and convolution 64

Chapter 4 z-transforms Fourier Transforms and Laplace Transforms 67

4.1 z-transform 68

4.1.1 Definitions and main results 68

4.1.2 Application to discrete systems 70

4.2 Fourier transform 73

4.2.1 Periodic signals 73

4.2.2 Non-periodic signals 74

4.2.3 Main properties of Fourier transforms 79

4.2.4 Application to analog signals and systems 82

4.2.5 Transfer function 86

4.2.6 Autocorrelation and intercorrelation of signals 88

4.3 Discrete Fourier transform and fast Fourier transform 91

4.3.1 Discrete Fourier transform 91

4.3.2 Fast Fourier transform (FFT) 95

4.4 Laplace transform 101

4.4.1 Definition 101

4.4.2 Properties 102

4.4.3 Differential equation 103

4.4.4 Convolution product 104

Chapter 5 Digitizing an Analog Signal 107

5.1 Introduction 107

5.2 Sampling 108

5.3 Quantization 112

5.4 Coding 116

Chapter 6 Modulation 119

6.1 Types of modulation 119

6.2 Amplitude modulation 121

6.2.1 Principle 121

6.2.2 Frequency space 123

6.2.3 Signal strength 124

6.2.4 Overmodulation 125

6.2.5 Demodulation 126

6.2.6 Single sideband 127

6.2.7 Modulation of a binary signal 127

6.3 Frequency modulation 130

6.3.1 Principle 130

6.3.2 Case of a sinusoidal signal 132

6.3.3 Spectrum 133

6.3.4 Signal power 136

6.3.5 FSK modulation 136

6.4 Phase modulation 139

6.4.1 Principle 139

6.4.2 PSK modulation 141

Chapter 7 Filtering 145

7.1 Definitions and reminders 145

7.1.1 Discrete signals 146

7.1.2 Analog signals 147

7.2 Analog filtering 148

7.2.1 General information 148

7.2.2 Common filters 148

7.2.3 Differential equations and transfer functions 152

7.3 Digital filtering 160

7.3.1 General information 160

7.3.2 Difference equation 161

7.3.3 Transfer function 163

7.3.4 Filter stability 166

7.3.5 Frequency behavior 168

7.3.6 FIR filters 170

7.3.7 IIR filters 173

Chapter 8 The Digital Image 177

8.1 Raster and vector images 177

8.1.1 Raster images 177

8.1.2 Vector images 179

8.2 Notions of colorimetry 179

8.2.1 Grayscale 180

8.2.2 Colors 184

8.2.3 True color and indexed color 188

8.4 Image display modes 190

8.4.1 Matrix coding 190

8.4.2 Vector coding 192

8.4.3 Fractal curves 193

8.5 Compression and compaction 193

8.6 Image formats 195

8.6.1 Raster image formats 195

8.6.2 Vector image formats 196

Chapter 9 2D Computer Graphics 197

9.1 Basic graphics processing 197

9.1.1 Drawing a segment 197

9.1.2 Drawing a circle 201

9.1.3 Windowing 202

9.1.4 Filling and coloring 204

9.2 2D geometric transformations 205

9.2.1 Homogeneous coordinates 205

9.2.2 Translation 206

9.2.3 Rotation around the origin 207

9.2.4 Dilation 208

9.2.5 Symmetries 209

9.2.6 Composition of transformations 210

9.2.7 Object representation 211

9.3 2D parametric curves 212

9.3.1 Using cubic curves 212

9.3.2 Hermite curves 213

9.3.3 Bézier curves 214

9.3.4 B-spline curves 216

Chapter 10 Concepts in Image Processing and Analysis 217

10.1 Image display 218

10.1.1 Simple correspondence 218

10.1.2 Random threshold display 218

10.1.3 Threshold matrix display 220

10.2 Basic image analysis tools 222

10.2.1 Histogram 222

10.2.2 Profiles 224

10.2.3 Level search 224

10.2.4 Information contained in an image 224

10.3 Basic processing 226

10.3.1 Histogram transformation 226

10.3.2 Changing the shape of the histogram: equalization 230

10.3.3 Image subtraction and averaging 233

10.4 Filtering 233

10.4.1 Filtering in the spatial domain 233

10.4.2 Frequency domain filtering 241

10.5 Binary images 245

10.5.1 Morphological operators 246

10.6 Segmentation 247

10.6.1 Outline extraction 248

10.6.2 Regional segmentation 252

Chapter 11 Basics of Image Compression 257

11.1 General information 258

11.1.1 Coding redundancy 258

11.1.2 Interpixel redundancy 259

11.1.3 Psychovisual redundancy 260

11.1.4 Confidence criteria 261

11.1.5 Modeling image compression 262

11.2 Lossless compression or compaction 263

11.2.1 Variable-length coding 263

11.2.2 Bit-plane coding 266

11.2.3 Predictive coding 268

11.3 Lossy compression 269

11.3.1 Predictive coding 269

11.3.2 Transform coding 270

11.4 An image compression standard: JPEG 272

Chapter 12 Elements of Numerical Analysis 277

12.1 Numerical solution of a linear system 278

12.1.1 Exact solution of a linear Cramerian system 278

12.1.2 Principle of iterative methods 280

12.1.3 Diagonal iteration and GaussSeidel iteration 282

12.1.4 Direct methods 283

12.2 Numerical solution of fx = 0 287

12.2.1 Introduction 287

12.2.2 General methods 288

12.2.3 Methods applicable to polynomial equations 294

12.3 Numerical integration 297

12.3.1 Introduction 297

12.3.2 Classic methods 297

12.3.3 Polynomial interpolation 302

12.3.4 Quadrature formulas 304

12.3.5 Monte Carlo method 307

12.4 Numerical solution of differential equations 310

12.4.1 Introduction 310

12.4.2 Separate-step algorithms 311

12.4.3 Linked-step methods 318

12.5 Numerical solution of partial differential equations 320

12.5.1 Definitions 320

12.5.2 Finite difference method 321

12.5.3 Resolution examples 325

12.6 Appendices 331

12.6.1 Dichotomy method 331

12.6.2 Iterative method 332

12.6.3 Secant method 332

12.6.4 Tangent method 333

12.6.5 Monte Carlo method Example 12.7 334

12.6.6 Monte Carlo method Example 12.8 336

References 339

List of Authors 343

Index 345
Gérard-Michel Cochard is Professor Emeritus at Université de Picardie Jules Verne, France, where he has held various senior positions. He has also served at the French Ministry of Education and the CNAM (Conservatoire National des Arts et Métiers). His research is conducted at the Eco-PRocédés, Optimisation et Aide à la Décision (EPROAD) laboratory, France.

Mhand Hifi is Professor of Computer Science at Université de Picardie Jules Verne, France, where he heads the EPROAD UR 4669 laboratory and manages the ROD team. As an expert in operations research and NP-hard problem-solving, he actively contributes to numerous international conferences and journals in the field.