Muutke küpsiste eelistusi

Mathematics for Physicists and Engineers [Multiple-component retail product]

  • Formaat: Multiple-component retail product, 608 pages, kõrgus x laius: 235x155 mm, 385 black & white illustrations, 6 black & white tables, biography, Contains 1 Book and 1 CD-ROM
  • Ilmumisaeg: 02-Nov-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642001726
  • ISBN-13: 9783642001727
Teised raamatud teemal:
  • Multiple-component retail product
  • Hind: 69,78 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 82,10 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Multiple-component retail product, 608 pages, kõrgus x laius: 235x155 mm, 385 black & white illustrations, 6 black & white tables, biography, Contains 1 Book and 1 CD-ROM
  • Ilmumisaeg: 02-Nov-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642001726
  • ISBN-13: 9783642001727
Teised raamatud teemal:
Mathematicsisanessentialtoolforphysicistsandengineerswhichstudentsmust usefromtheverybeginningoftheirstudies. Thiscombinationoftextbookandstudy guideaimstodevelopasrapidlyaspossiblethestudents'abilitytounderstandand tousethosepartsofmathematicswhichtheywillmostfrequentlyencounter. Thus functions,vectors,calculus,differentialequationsandfunctionsofseveralvariable s arepresentedin averyaccessible way. Furtherchaptersinthe bookprovidethe basicknowledgeonvariousimportanttopicsinappliedmathematics. Basedontheirextensiveexperienceaslecturers,eachoftheauthorshasacquired acloseawarenessoftheneedsof rst-andsecond-yearsstudents. Oneoftheiraims hasbeentohelpuserstotacklesuccessfullythedif cultieswithmathematicswhich are commonlymet. A special feature which extendsthe supportivevalue of the maintextbookistheaccompanying"studyguide". Thisstudyguideaimstosatisfy twoobjectivessimultaneously:itenablesstudentstomakemoreeffectiveuseofthe maintextbook,anditoffersadviceandtrainingontheimprovementoftechniques onthestudyoftextbooksgenerally. Thestudyguidedividesthewholelearningtaskintosmallunitswhichthes- dentisverylikelytomastersuccessfully. Thusheorsheisaskedtoreadandstudy alimitedsectionofthetextbookandtoreturntothestudyguideafterwards. Lea- ingresultsarecontrolled,monitoredanddeepenedbygradedquestions,exercises, repetitionsand nallybyproblemsandapplicationsofthecontentstudied. Sincethe degreeofdif cultiesisslowlyrisingthestudentsgaincon denceimmediatelyand experiencetheirownprogressinmathematicalcompetencethusfosteringmoti- tion. Incaseoflearningdif cultiesheorsheisgivenadditionalexplanationsandin caseofindividualneedssupplementaryexercisesandapplications. Sothesequence ofthestudiesisindividualisedaccordingtotheindividualperformanceandneeds andcanberegardedasafulltutorialcourse. TheworkwasoriginallypublishedinGermanyunderthetitle"Mathematikfur Physiker"(Mathematicsforphysicists). Ithasproveditsworthinyearsofactual use. Thisnew internationalversionhasbeenmodi edand extendedto meet the needsofstudentsinphysicsandengineering. vii viii Preface TheCDofferstwoversions. Ina rstversiontheframesofthestudyguideare presentedonaPCscreen. Inthiscasetheuserfollowstheinstructionsgivenonthe screen,at rststudyingsectionsofthetextbookoffthePC. Afterthisautonomous studyheistoanswerquestionsandtosolveproblemspresentedbythePC. Asecond versionisgivenaspdf lesforstudentspreferringtoworkwithaprintversion. Boththetextbookandthestudyguidehaveresultedfromteamwork. The- thors of the original textbook and study guides were Prof. Dr. Weltner, Prof. Dr. P. -B. Heinrich,Prof. Dr. H. Wiesner,P. EngelhardandProf. Dr. H. Schmidt. Thetranslationandtheadaptionwasundertakenbytheundersigned. Frankfurt,August2009 K. Weltner J. Grosjean P. Schuster W. J. Weber Acknowledgement OriginallypublishedintheFederalRepublicofGermanyunderthetitle MathematikfurPhysiker bytheauthors K. Weltner,H. Wiesner,P. -B. Heinrich,P. EngelhardtandH. Schmidt. TheworkhasbeentranslatedbyJ. GrosjeanandP. Schusterandadaptedtotheneeds ofengineeringandsciencestudentsinEnglishspeakingcountriesbyJ. Grosjean, P. Schuster,W. J. WeberandK. Weltner. ix Contents Preface...vii 1 VectorAlgebraI:ScalarsandVectors...1 1. 1 ScalarsandVectors...1 1. 2 AdditionofVectors...4 1. 2. 1 SumofTwoVectors:GeometricalAddition ...4 1. 3 SubtractionofVectors...6 1. 4 ComponentsandProjectionofaVector ...7 1. 5 ComponentRepresentationinCoordinateSystems...9 1. 5. 1 PositionVector ...9 1. 5. 2 UnitVectors...10 1. 5. 3 ComponentRepresentationofaVector ...11 1. 5. 4 RepresentationoftheSumofTwoVectors inTermsofTheirComponents...12 1. 5. 5 SubtractionofVectorsinTermsoftheirComponents...13 1. 6 MultiplicationofaVectorbyaScalar...14 1. 7 MagnitudeofaVector...15 2 VectorAlgebraII:ScalarandVectorProducts...23 2. 1 ScalarProduct ...23 2. 1. 1 Application:EquationofaLineandaPlane...26 2. 1. 2 SpecialCases ...26 2. 1. 3 CommutativeandDistributiveLaws...27 2. 1. 4 ScalarProductinTermsoftheComponentsoftheVectors. 27 2. 2 VectorProduct...30 2. 2. 1 Torque...30 2. 2. 2 TorqueasaVector...31 2. 2. 3 De nitionoftheVectorProduct...
Preface vii
Vector Algebra I: Scalars and Vectors
1(22)
Scalars and Vectors
1(3)
Addition of Vectors
4(2)
Sum of Two Vectors: Geometrical Addition
4(2)
Subtraction of Vectors
6(1)
Components and Projection of a Vector
7(2)
Component Representation in Coordinate Systems
9(5)
Position Vector
9(1)
Unit Vectors
10(1)
Component Representation of a Vector
11(1)
Representation of the Sum of Two Vectors in Terms of Their Components
12(1)
Subtraction of Vectors in Terms of their Components
13(1)
Multiplication of a Vector by a Scalar
14(1)
Magnitude of a Vector
15(8)
Vector Algebra II: Scalar and Vector Products
23(16)
Scalar Product
23(7)
Application: Equation of a Line and a Plane
26(1)
Special Cases
26(1)
Commutative and Distributive Laws
27(1)
Scalar Product in Terms of the Components of the Vectors
27(3)
Vector Product
30(9)
Torque
30(1)
Torque as a Vector
31(1)
Definition of the Vector Product
32(1)
Special Cases
33(1)
Anti-Commutative Law for Vector Products
33(1)
Components of the Vector Product
34(5)
Functions
39(30)
The Mathematical Concept of Functions and its Meaning in Physics and Engineering
39(3)
Introduction
39(1)
The Concept of a Function
40(2)
Graphical Representation of Functions
42(5)
Coordinate System, Position Vector
42(1)
The Linear Function: The Straight Line
43(1)
Graph Plotting
44(3)
Quadratic Equations
47(2)
Parametric Changes of Functions and Their Graphs
49(1)
Inverse Functions
50(2)
Trigonometric or Circular Functions
52(12)
Unit Circle
52(1)
Sine Function
53(5)
Cosine Function
58(1)
Relationships Between the Sine and Cosine Functions
59(2)
Tangent and Cotangent
61(1)
Addition Formulae
62(2)
Inverse Trigonometric Functions
64(2)
Function of a Function (Composition)
66(3)
Exponential, Logarithmic and Hyperbolic Functions
69(16)
Powers, Exponential Function
69(5)
Powers
69(1)
Laws of Indices or Exponents
70(1)
Binomial Theorem
71(1)
Exponential Function
71(3)
Logarithm, Logarithmic Function
74(4)
Logarithm
74(2)
Operations with Logarithms
76(1)
Logarithmic Functions
77(1)
Hyperbolic Functions and Inverse Hyperbolic Functions
78(7)
Hyperbolic Functions
78(3)
Inverse Hyperbolic Functions
81(4)
Differential Calculus
85(60)
Sequences and Limits
85(6)
The Concept of Sequence
85(1)
Limit of a Sequence
86(3)
Limit of a Function
89(1)
Examples for the Practical Determination of Limits
89(2)
Continuity
91(1)
Series
92(2)
Geometric Series
93(1)
Differentiation of a Function
94(6)
Gradient or Slope of a Line
94(1)
Gradient of an Arbitrary Curve
95(2)
Derivative of a Function
97(1)
Physical Application: Velocity
98(1)
The Differential
99(1)
Calculating Differential Coefficients
100(12)
Derivatives of Power Functions; Constant Factors
101(1)
Rules for Differentiation
102(4)
Differentiation of Fundamental Functions
106(6)
Higher Derivatives
112(1)
Extreme Values and Points of Inflexion; Curve Sketching
113(8)
Maximum and Minimum Values of a Function
113(4)
Further Remarks on Points of Inflexion (Contraflexure)
117(1)
Curve Sketching
118(3)
Applications of Differential Calculus
121(6)
Extreme Values
121(1)
Increments
122(1)
Curvature
123(2)
Determination of Limits by Differentiation: L'Hopital's Rule
125(2)
Further Methods for Calculating Differential Coefficients
127(2)
Implicit Functions and their Derivatives
127(1)
Logarithmic Differentiation
128(1)
Parametric Functions and their Derivatives
129(16)
Parametric Form of an Equation
129(4)
Derivatives of Parametric Functions
133(12)
Integral Calculus
145(46)
The Primitive Function
145(2)
Fundamental Problem of Integral Calculus
145(2)
The Area Problem: The Definite Integral
147(2)
Fundamental Theorem of the Differential and Integral Calculus
149(4)
The Definite Integral
153(6)
Calculation of Definite Integrals from Indefinite Integrals
153(3)
Examples of Definite Integrals
156(3)
Methods of Integration
159(16)
Principle of Verification
159(1)
Standard Integrals
159(1)
Constant Factor and the Sum of Functions
160(1)
Integration by Parts: Product of Two Functions
161(3)
Integration by Substitution
164(2)
Substitution in Particular Cases
166(4)
Integration by Partial Fractions
170(5)
Rules for Solving Definite Integrals
175(3)
Mean Value Theorem
178(1)
Improper Integrals
179(2)
Line Integrals
181(10)
Applications of Integration
191(36)
Areas
191(7)
Areas for Parametric Functions
194(1)
Areas in Polar Coordinates
195(2)
Areas of Closed Curves
197(1)
Lengths of Curves
198(4)
Lengths of Curves in Polar Coordinates
201(1)
Surface Area and Volume of a Solid of Revolution
202(6)
Applications to Mechanics
208(19)
Basic Concepts of Mechanics
208(1)
Center of Mass and Centroid
208(3)
The Theorems of Pappus
211(2)
Moments of Inertia; Second Moment of Area
213(14)
Taylor Series and Power Series
227(20)
Introduction
227(1)
Expansion of a Function in a Power Series
228(4)
Interval of Convergence of Power Series
232(1)
Approximate Values of Functions
233(2)
Expansion of a Function f (x) at an Arbitrary Position
235(2)
Applications of Series
237(10)
Polynomials as Approximations
237(3)
Integration of Functions when Expressed as Power Series
240(2)
Expansion in a Series by Integrating
242(5)
Complex Numbers
247(26)
Definition and Properties of Complex Numbers
247(3)
Imaginary Numbers
247(1)
Complex Numbers
248(1)
Fields of Application
248(1)
Operations with Complex Numbers
249(1)
Graphical Representation of Complex Numbers
250(4)
Gauss Complex Number Plane: Argand Diagram
250(1)
Polar Form of a Complex Number
251(3)
Exponential Form of Complex Numbers
254(7)
Euler's Formula
254(1)
Exponential Form of the Sine and Cosine Functions
255(1)
Complex Numbers as Powers
255(3)
Multiplication and Division in Exponential Form
258(1)
Raising to a Power, Exponential Form
259(1)
Periodicity of rejα
259(1)
Transformation of a Complex Number From One Form into Another
260(1)
Operations with Complex Numbers Expressed in Polar Form
261(12)
Multiplication and Division
261(2)
Raising to a Power
263(1)
Roots of a Complex Number
263(10)
Differential Equations
273(48)
Concept and Classification of Differential Equations
273(4)
Preliminary Remarks
277(2)
General Solution of First-and Second-Order DEs with Constant Coefficients
279(12)
Homogeneous Linear DE
279(6)
Non-Homogeneous Linear DE
285(6)
Boundary Value Problems
291(2)
First-Order DEs
291(1)
Second-Order DEs
291(2)
Some Applications of DEs
293(9)
Radioactive Decay
293(1)
The Harmonic Oscillator
294(8)
General Linear First-Order DEs
302(4)
Solution by Variation of the Constant
302(2)
A Straightforward Method Involving the Integrating Factor
304(2)
Some Remarks on General First-Order DEs
306(7)
Bernoulli's Equations
306(1)
Separation of Variables
307(1)
Exact Equations
308(3)
The Integrating Factor - General Case
311(2)
Simultaneous DEs
313(4)
Higher-Order DEs Interpreted as Systems of First-Order Simultaneous DEs
317(1)
Some Advice on Intractable DEs
317(4)
Laplace Transforms
321(16)
Introduction
321(1)
The Laplace Transform Definition
321(1)
Laplace Transform of Standard Functions
322(6)
Solution of Linear DEs with Constant Coefficients
328(2)
Solution of Simultaneous DEs with Constant Coefficients
330(7)
Functions of Several Variables; Partial Differentiation; and Total Differentiation
337(40)
Introduction
337(1)
Functions of Several Variables
338(6)
Representing the Surface by Establishing a Table of Z-Values
339(1)
Representing the Surface by Establishing Intersecting Curves
340(3)
Obtaining a Functional Expression for a Given Surface
343(1)
Partial Differentiation
344(6)
Higher Partial Derivatives
348(2)
Total Differential
350(8)
Total Differential of Functions
350(4)
Application: Small Tolerances
354(2)
Gradient
356(2)
Total Derivative
358(3)
Explicit Functions
358(2)
Implicit Functions
360(1)
Maxima and Minima of Functions of Two or More Variables
361(6)
Applications: Wave Function and Wave Equation
367(10)
Wave Function
367(4)
Wave Equation
371(6)
Multiple Integrals; Coordinate Systems
377(24)
Multiple Integrals
377(2)
Multiple Integrals with Constant Limits
379(3)
Decomposition of a Multiple Integral into a Product of Integrals
381(1)
Multiple Integrals with Variable Limits
382(4)
Coordinate Systems
386(9)
Polar Coordinates
387(2)
Cylindrical Coordinates
389(2)
Spherical Coordinates
391(4)
Application: Moments of Inertia of a Solid
395(6)
Transformation of Coordinates; Matrices
401(28)
Introduction
401(3)
Parallel Shift of Coordinates: Translation
404(3)
Rotation
407(6)
Rotation in a Plane
407(3)
Successive Rotations
410(1)
Rotations in Three-Dimensional Space
411(2)
Matrix Algebra
413(6)
Addition and Subtraction of Matrices
415(1)
Multiplication of a Matrix by a Scalar
416(1)
Product of a Matrix and a Vector
416(1)
Multiplication of Two Matrices
417(2)
Rotations Expressed in Matrix Form
419(2)
Rotation in Two-Dimensional Space
419(1)
Special Rotation in Three-Dimensional Space
420(1)
Special Matrices
421(3)
Inverse Matrix
424(5)
Sets of Linear Equations; Determinants
429(22)
Introduction
429(1)
Sets of Linear Equations
429(9)
Gaussian Elimination: Successive Elimination of Variables
429(2)
Gauss-Jordan Elimination
431(1)
Matrix Notation of Sets of Equations and Determination of the Inverse Matrix
432(3)
Existence of Solutions
435(3)
Determinants
438(13)
Preliminary Remarks on Determinants
438(1)
Definition and Properties of an n-Row Determinant
439(5)
Rank of a Determinant and Rank of a Matrix
444(1)
Applications of Determinants
445(6)
Eigenvalues and Eigenvectors of Real Matrices
451(10)
Two Case Studies: Eigenvalues of 2 x 2 Matrices
451(3)
General Method for Finding Eigenvalues
454(2)
Worked Example: Eigenvalues of a 3 x 3 Matrix
456(2)
Important Facts on Eigenvalues and Eigenvectors
458(3)
Vector Analysis: Surface Integrals, Divergence, Curl and Potential
461(30)
Flow of a Vector Field Through a Surface Element
461(3)
Surface Integral
464(2)
Special Cases of Surface Integrals
466(4)
Flow of a Homogeneous Vector Field Through a Cuboid
466(2)
Flow of a Spherically Symmetrical Field Through a Sphere
468(2)
Application: The Electrical Field of a Point Charge
470(1)
General Case of Computing Surface Integrals
470(5)
Divergence of a Vector Field
475(3)
Gauss's Theorem
478(2)
Curl of a Vector Field
480(4)
Stokes' Theorem
484(1)
Potential of a Vector Field
485(3)
Short Reference on Vector Derivatives
488(3)
Fourier Series; Harmonic Analysis
491(16)
Expansion of a Periodic Function into a Fourier Series
491(5)
Evaluation of the Coefficients
492(3)
Odd and Even Functions
495(1)
Examples of Fourier Series
496(5)
Expansion of Functions of Period 2L
501(1)
Fourier Spectrum
502(5)
Probability Calculus
507(12)
Introduction
507(1)
Concept of Probability
508(7)
Random Experiment, Outcome Space and Events
508(1)
The Classical Definition of Probability
509(1)
The Statistical Definition of Probability
509(2)
General Properties of Probabilities
511(2)
Probability of Statistically Independent Events. Compound Probability
513(2)
Permutations and Combinations
515(4)
Permutations
515(1)
Combinations
516(3)
Probability Distributions
519(18)
Discrete and Continuous Probability Distributions
519(6)
Discrete Probability Distributions
519(3)
Continuous Probability Distributions
522(3)
Mean Values of Discrete and Continuous Variables
525(2)
The Normal Distribution as the Limiting Value of the Binomial Distribution
527(10)
Properties of the Normal Distribution
530(2)
Derivation of the Binomial Distribution
532(5)
Theory of Errors
537(20)
Purpose of the Theory of Errors
537(1)
Mean Value and Variance
538(4)
Mean Value
538(1)
Variance and Standard Deviation
539(1)
Mean Value and Variance in a Random Sample and Parent Population
540(2)
Mean Value and Variance of Continuous Distributions
542(2)
Error in Mean Value
544(1)
Normal Distribution: Distribution of Random Errors
545(1)
Law of Error Propagation
546(2)
Weighted Average
548(1)
Curve Fitting: Method of Least Squares, Regression Line
549(3)
Correlation and Correlation Coefficient
552(5)
Answers 557(24)
Index 581