Preface |
|
v | |
Quantum Entanglement |
|
1 | (2) |
|
1 Algebraic measures of entanglement |
|
|
3 | (22) |
|
|
|
3 | (1) |
|
|
4 | (4) |
|
|
8 | (1) |
|
|
8 | (10) |
|
|
18 | (7) |
|
2 Kinematics of qubit pairs |
|
|
25 | (52) |
|
|
|
|
25 | (3) |
|
|
28 | (6) |
|
2.3 Basic classification of states |
|
|
34 | (2) |
|
2.4 Projectors and subspaces |
|
|
36 | (7) |
|
|
36 | (3) |
|
|
39 | (2) |
|
|
41 | (2) |
|
|
43 | (1) |
|
2.5 Positivity and separability |
|
|
43 | (4) |
|
2.6 Lewenstein-Sanpera decompositions |
|
|
47 | (13) |
|
2.6.1 Basic properties of optimal LSDs |
|
|
51 | (3) |
|
2.6.2 Optimal LSDs of truly positive states |
|
|
54 | (6) |
|
|
60 | (12) |
|
2.7.1 Self-transposed states |
|
|
60 | (3) |
|
2.7.2 Generalized Werner states |
|
|
63 | (3) |
|
|
66 | (6) |
|
|
72 | (5) |
|
3 Invariants for multiple qubits: the case of 3 qubits |
|
|
77 | (24) |
|
|
|
|
77 | (2) |
|
3.2 Invariants for compact Lie groups |
|
|
79 | (3) |
|
|
82 | (3) |
|
|
85 | (3) |
|
3.5 A basic set of invariants for 3 qubits |
|
|
88 | (7) |
|
3.6 Some implications for other representations |
|
|
95 | (4) |
|
Universality of Quantum Gates |
|
|
99 | (2) |
|
4 Universal quantum gates |
|
|
101 | (18) |
|
|
|
4.1 Statements of main results |
|
|
101 | (3) |
|
4.2 Examples and relations to works of other authors |
|
|
104 | (2) |
|
4.3 Proof of theorem 4.1 (outline) |
|
|
106 | (1) |
|
4.4 First step: from universality to exact universality |
|
|
107 | (1) |
|
4.5 Second step: reduction to n = 2 |
|
|
108 | (1) |
|
4.6 Fourth Step: analyzing the Lie algebra g |
|
|
109 | (1) |
|
4.7 Fifth Step: the normalizer of H |
|
|
110 | (2) |
|
|
112 | (1) |
|
4.9 A variant of theorem 4.1 |
|
|
113 | (4) |
|
Quantum Search Algorithms |
|
|
117 | (2) |
|
5 From coupled pendulums to quantum search |
|
|
119 | (16) |
|
|
|
|
120 | (1) |
|
|
120 | (1) |
|
|
121 | (4) |
|
|
125 | (2) |
|
|
125 | (1) |
|
|
126 | (1) |
|
5.5 Towards quantum searching |
|
|
127 | (1) |
|
5.6 The quantum search algorithm |
|
|
128 | (2) |
|
5.7 Why does it take O(√N) cycles? |
|
|
130 | (1) |
|
5.8 Applications and extensions |
|
|
131 | (4) |
|
|
131 | (1) |
|
5.8.2 Mechanical applications |
|
|
132 | (1) |
|
5.8.3 Quantum mechanical applications |
|
|
133 | (2) |
|
6 Generalization of Grover's algorithm to multiobject search in quantum computing, Part I: continuous time and discrete time |
|
|
135 | (26) |
|
|
|
|
|
135 | (2) |
|
6.2 Continuous time quantum computing algorithm for multiobject search |
|
|
137 | (10) |
|
6.3 Discrete time case: straightforward generalization of Grover's algorithm to multiobject search |
|
|
147 | (14) |
|
7 Generalization of Grover's algorithm to multiobject search in quantum computing, Part II: general unitary transformations |
|
|
161 | (10) |
|
|
|
|
162 | (1) |
|
7.2 Multiobject search algorithm using a general unitary transformation |
|
|
163 | (6) |
|
Quantum Computational Complexity |
|
|
169 | (2) |
|
8 Counting complexity and quantum computation |
|
|
171 | (52) |
|
|
|
171 | (2) |
|
|
173 | (22) |
|
8.2.1 Qubits, quantum gates, and quantum circuits |
|
|
175 | (3) |
|
8.2.2 Classical complexity |
|
|
178 | (14) |
|
8.2.3 Classical computations on a quantum circuit |
|
|
192 | (2) |
|
8.2.4 Relativizing quantum computation |
|
|
194 | (1) |
|
8.3 Equivalence of FQP and GapP |
|
|
195 | (5) |
|
8.4 Strengths of the quantum model |
|
|
200 | (7) |
|
|
202 | (5) |
|
8.5 Limitations of the quantum model |
|
|
207 | (7) |
|
|
214 | (7) |
|
Quantum Error-Correcting Codes |
|
|
221 | (2) |
|
9 Algorithmic aspects of quantum error-correcting codes |
|
|
223 | (30) |
|
|
|
223 | (1) |
|
9.2 General quantum error-correcting codes |
|
|
224 | (9) |
|
|
224 | (5) |
|
|
229 | (4) |
|
|
233 | (8) |
|
|
233 | (6) |
|
9.3.2 Example: binary Hamming code |
|
|
239 | (2) |
|
9.4 Additive quantum codes |
|
|
241 | (9) |
|
|
241 | (5) |
|
9.4.2 Example: quantum Hamming code |
|
|
246 | (4) |
|
|
250 | (3) |
|
|
253 | (24) |
|
|
|
|
253 | (2) |
|
|
255 | (1) |
|
10.3 Quantum error control codes |
|
|
256 | (3) |
|
|
259 | (3) |
|
|
262 | (2) |
|
|
264 | (1) |
|
10.7 Clifford codes that are stabilizer codes |
|
|
265 | (4) |
|
10.8 A remarkable error group |
|
|
269 | (1) |
|
|
269 | (1) |
|
|
270 | (5) |
|
Quantum Computing Algebraic and Geometric Structures |
|
|
275 | (2) |
|
11 Invariant polynomial functions on k qudits |
|
|
277 | (10) |
|
|
|
|
277 | (2) |
|
11.2 Polynomial invariants of tensor states |
|
|
279 | (2) |
|
11.3 The generalized determinant function |
|
|
281 | (1) |
|
11.4 Asymptotics as k → ∞ |
|
|
282 | (1) |
|
11.5 Quartic invariants of k qudits |
|
|
283 | (4) |
|
12 Z2-systolic freedom and quantum codes |
|
|
287 | (36) |
|
|
|
|
12.0 Preliminaries and statement of results |
|
|
287 | (7) |
|
12.1 Mapping torus constructions |
|
|
294 | (7) |
|
12.2 Verification of freedom and curvature estimates |
|
|
301 | (7) |
|
12.3 Quantum codes from Riemannian manifolds |
|
|
308 | (13) |
|
|
321 | (2) |
|
|
323 | (36) |
|
|
|
|
323 | (3) |
|
13.2 Teleportation of a two-state system |
|
|
326 | (11) |
|
|
327 | (3) |
|
13.2.2 Cavity QED implementation |
|
|
330 | (7) |
|
13.3 Discrete N-state quantum systems |
|
|
337 | (3) |
|
13.4 Entangled state teleportation |
|
|
340 | (6) |
|
13.4.1 Two-qubit entangled state |
|
|
341 | (3) |
|
13.4.2 N-qubit entangled state |
|
|
344 | (2) |
|
13.5 Continuous quantum variable states |
|
|
346 | (5) |
|
13.5.1 Nonlocal measurements |
|
|
346 | (2) |
|
|
348 | (3) |
|
|
351 | (6) |
|
Quantum Secure Communication and Quantum Cryptography |
|
|
357 | (2) |
|
14 Communicating with qubit pairs |
|
|
359 | (46) |
|
|
|
|
|
|
360 | (1) |
|
14.2 The mean king's problem |
|
|
361 | (10) |
|
14.2.1 The Vaidman-Aharonov- Albert puzzle |
|
|
361 | (1) |
|
14.2.2 The stranded physicist's solution |
|
|
362 | (5) |
|
14.2.3 The mean king's second challenge |
|
|
367 | (2) |
|
14.2.4 A different perspective |
|
|
369 | (2) |
|
14.3 BB84: cryptography with single qubits |
|
|
371 | (6) |
|
14.3.1 Description of the scheme |
|
|
372 | (1) |
|
14.3.2 Eavesdropping: minimizing the error probability |
|
|
373 | (2) |
|
14.3.3 Eavesdropping: maximizing the raw information |
|
|
375 | (2) |
|
14.4 Cryptography with qubit pairs |
|
|
377 | (8) |
|
14.4.1 Description of the scheme |
|
|
377 | (3) |
|
14.4.2 Eavesdropping: minimizing the error probability |
|
|
380 | (4) |
|
14.4.3 Eavesdropping: maximizing the raw information |
|
|
384 | (1) |
|
14.5 Idealized single-photon schemes |
|
|
385 | (7) |
|
14.5.1 BB84 scheme with two state pairs |
|
|
385 | (3) |
|
14.5.2 Qubit-pair scheme with four state pairs |
|
|
388 | (4) |
|
14.6 Direct communication with qubit pairs |
|
|
392 | (6) |
|
14.6.1 Description of the scheme |
|
|
392 | (3) |
|
14.6.2 Minimal error probability |
|
|
395 | (3) |
|
|
398 | (5) |
|
Commentary on Quantum Computing |
|
|
403 | (2) |
|
15 Transgressing the boundaries of quantum computation: a contribution to the hermeneutics of the NMR paradigm |
|
|
405 | (16) |
|
|
15.1 Review of NMR quantum computing |
|
|
406 | (1) |
|
15.2 Review of modular arithmetic |
|
|
407 | (2) |
|
15.3 A proposed "quantum" implementation |
|
|
409 | (3) |
|
|
412 | (9) |
Index |
|
421 | |