Muutke küpsiste eelistusi

MATLAB and SIMULINK for Engineers [Pehme köide]

  • Formaat: Paperback / softback, 492 pages, kõrgus x laius x paksus: 242x184x21 mm, kaal: 710 g, 370 illustrations (screen shots)
  • Ilmumisaeg: 08-Dec-2011
  • Kirjastus: OUP India
  • ISBN-10: 0198072449
  • ISBN-13: 9780198072447
Teised raamatud teemal:
  • Pehme köide
  • Hind: 42,39 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 492 pages, kõrgus x laius x paksus: 242x184x21 mm, kaal: 710 g, 370 illustrations (screen shots)
  • Ilmumisaeg: 08-Dec-2011
  • Kirjastus: OUP India
  • ISBN-10: 0198072449
  • ISBN-13: 9780198072447
Teised raamatud teemal:
Matlab® is a high-performance technical computing language with an incredibly rich variety of functions and enormous programming capabilities, and Simulink is a software package for modeling, simulating, and analysing dynamic systems. Both MATLAB and Simulink are integrated and one can simulate, analyse, or revise the models in either environment. MATLAB and Simulink for Engineers captures the beauty of this software and will serve as a self-study material for students of electrical, computer, and mechanical engineering who would be required to use this software for varied courses.

Based on version 2010a of MATLAB, the book begins with an introduction to MATLAB programming describing the MATLAB toolbar and Simulink toolboxes. It goes on to discuss various MATLAB operators, functions, and graphics in detail. Analog and digital communication techinques are covered in depth. Applications of Simulink and MATLAB in electrical engineering, electrical machines and power system projects, simulation of rectifiers, inverters, choppers, and cycloconverters are presented in detail. Applications in computer science, communication, and mechanical engineering are also discussed. It also includes a chapter on recent developments in this area covering topics such as the matrix converter, modulation techniques, and PWM rectifiers.

The book provides numerous MATLAB programs, tested and run for various projects in different disciplines of engineering. The programs with their outputs, through various screenshots of the MATLAB windows, will help readers familiarise themselves with the software.


Based on the latest version of MATLAB (2010a), the book begins with an introduction to MATLAB programming describing the MATLAB toolbar and SIMULINK toolboxes. Further the various MATLAB operators, functions, and graphics are discussed in detail. Applications of SIMULINK and MATLAB in electrical engineering, electrical machines & power system projects, simulation of rectifiers, inverters, choppers, and cycloconverters is presented in detail. Applications in computer science, communication and mechanical engineering is also discussed. Finally a chapter on recent developments in this area covers topics such as the matrix converter, modulation techniques, and PWM rectifiers.

The book provides numerous MATLAB programs tested and run for various projects for different disciplines in engineering. The programs, complete with their outputs, through various screen shots of the MATLAB windows help readers familiarise themselves with the software.
Preface v
List of Plates
xv
Chapter 1 Introduction to MATLAB Programming
1(11)
1.1 Introduction
1(1)
1.2 What is MATLAB?
1(1)
1.3 Getting Started---Step 1
2(2)
1.4 Getting Started---Step 2
4(1)
1.4.1 Formats for Numbers
4(1)
1.5 Getting Started---Step 3
5(1)
1.6 Getting Started---Step 4
6(6)
Chapter 2 Fundamentals of MATLAB Programming
12(53)
2.1 Introduction
12(1)
2.2 Variables
12(2)
2.3 Arrays
14(3)
2.4 Matrices
17(2)
2.5 MATLAB Operators
19(5)
2.5.1 Arithmetic Operators
19(1)
2.5.2 Relational Operators
20(1)
2.5.3 Logical Operators
21(3)
2.5.4 Operator Precedence
24(1)
2.6 MATLAB Graphics
24(24)
2.6.1 Plots
25(2)
2.6.2 Subplots
27(2)
2.6.3 Other Types of Plots
29(19)
2.7 Branching and Looping Functions
48(5)
2.7.1 Branching Functions
48(3)
2.7.2 Looping Functions
51(2)
2.8 Miscellaneous Functions
53(4)
2.8.1 String Functions
53(1)
2.8.2 Input/Output Functions
54(3)
2.9 Programming a Three-phase Voltage Source
57(8)
Chapter 3 Fundamentals of Simulink
65(46)
3.1 Introduction
65(2)
3.2 Commonly Used Blocks
67(22)
3.2.1 Bus Selector, Bus Creator, and Scope Blocks and Configuration Parameters
68(8)
3.2.2 Data Type Conversion, Constant, and Display Blocks
76(3)
3.2.3 Ground, Terminator, In-port, and Out-port Blocks
79(1)
3.2.4 Gain, Product, Sum, and Unit Delay Blocks
79(2)
3.2.5 Mux and Demux Blocks
81(2)
3.2.6 Integrator and Discrete Time Integrator Blocks
83(2)
3.2.7 Logical Operator and Relational Operator Blocks
85(2)
3.2.8 Switch and Saturation Blocks
87(2)
3.3 Application Block Sets
89(9)
3.3.1 Power Systems Toolbox
89(8)
3.3.2 Sim Mechanics
97(1)
3.4 User-defined Functions
98(2)
3.4.1 Fcn Block
98(1)
3.4.2 MATLAB Fcn Block
99(1)
3.4.3 Embedded MATLAB Function Block
99(1)
3.4.4 S-function Block
99(1)
3.4.5 Level-2 M-File S-Function Block
99(1)
3.4.6 S-Function Builder Block
99(1)
3.4.7 S-Function Examples Block
99(1)
3.5 Simulation Projects
100(11)
Chapter 4 Basic Electrical Engineering Applications
111(54)
4.1 Introduction
111(1)
4.2 Elementary Definitions
111(3)
4.3 Basic Waveforms
114(3)
4.4 Average, RMS, and Peak Value
117(2)
4.5 Ohm's Law
119(1)
4.6 Kirchhoff's Laws
119(2)
4.7 Independent and Dependent DC Sources
121(6)
4.8 Series and Parallel Circuits
127(7)
4.8.1 R-L Series Circuit
128(1)
4.8.2 Series R-C Circuit
129(2)
4.8.3 Series---Parallel Circuit
131(3)
4.9 Resonance Phenomenon
134(6)
4.9.1 Series Resonance
134(1)
4.9.2 Parallel Resonance
134(6)
4.10 Network Theorems
140(13)
4.10.1 Superposition Theorem
140(3)
4.10.2 Reciprocity Theorem
143(2)
4.10.3 Thevenin's Theorem
145(2)
4.10.4 Norton's Theorem
147(3)
4.10.5 Maximum Power Transfer Theorem
150(3)
4.11 Apparent, Active, and Reactive Powers
153(2)
4.12 Three-phase Source and Load Simulation
155(3)
4.13 Transformers---Single Phase and Three Phase
158(7)
Chapter 5 Simulation of Rectifiers
165(40)
5.1 Introduction
165(1)
5.2 Performance Parameters of Rectifiers
165(2)
5.3 Power Electronic Switches
167(1)
5.4 Uncontrolled Rectifiers
168(15)
5.4.1 Single-phase Half-wave Rectifier
168(7)
5.4.2 Single-phase Full-wave Rectifier
175(4)
5.4.3 Three-phase Half-wave Rectifier
179(2)
5.4.4 Three-phase Full-wave Rectifier
181(2)
5.5 Controlled Rectifiers
183(12)
5.5.1 Single-phase Half-wave Rectifier
183(5)
5.5.2 Single-phase Full-wave Rectifier
188(4)
5.5.3 Three-phase Rectifiers
192(3)
5.6 Simulation Projects
195(10)
Chapter 6 Simulation of Inverters
205(25)
6.1 Introduction
205(1)
6.2 Performance Parameters
206(1)
6.3 Single-phase Inverters
206(5)
6.3.1 Half-wave Inverter
206(2)
6.3.2 Full-wave Inverter
208(2)
6.3.3 Full-wave Inverter with R-L Load
210(1)
6.4 Current Source Inverter
211(2)
6.5 Three-phase Inverters
213(5)
6.5.1 Three-phase 180° Conduction Mode Inverter
213(3)
6.5.2 Three-phase 120° Conduction Mode Inverter
216(2)
6.6 PWM Inverter
218(3)
6.7 Dual Converters
221(2)
6.8 Simulation Projects
223(7)
Chapter 7 Simulation of Choppers and Cycloconverters
230(32)
7.1 Introduction
230(1)
7.2 Principle of Chopper Operation
231(1)
7.3 Control Techniques
232(1)
7.3.1 Duty Cycle Control
232(1)
7.3.2 Feedback Control
232(1)
7.4 Step-down or Buck Chopper
233(1)
7.5 Step-up or Boost Chopper
234(2)
7.6 Step-up/Step-down or Buck---Boost Chopper
236(1)
7.7 Types of Choppers
237(8)
7.7.1 Type-A Chopper
237(1)
7.7.2 Type-B Chopper
238(2)
7.7.3 Type-C Chopper
240(1)
7.7.4 Type-D Chopper
241(2)
7.7.5 Type-E Chopper
243(2)
7.8 Chopper Commutation Techniques
245(5)
7.8.1 Current Commutation Technique
245(2)
7.8.2 Voltage Commutation Technique
247(2)
7.8.3 Load Commutation Technique
249(1)
7.9 Cycloconverters
250(4)
7.9.1 Step-up Cycloconverter
250(2)
7.9.2 Step-down Cycloconverter
252(2)
7.10 Simulation Projects
254(8)
Chapter 8 Power System Engineering
262(42)
8.1 Introduction
262(2)
8.2 Electric Supply System
264(3)
8.3 Electrical Power Quality
267(2)
8.3.1 Waveform Distortion and Power System Harmonics
267(1)
8.3.2 Voltage Unbalance
268(1)
8.3.3 Voltage Regulation
268(1)
8.3.4 Voltage Interruptions
269(1)
8.4 Power Definitions Under Non-sinusoidal Conditions
269(4)
8.4.1 Power Definitions in Frequency Domain
269(2)
8.4.2 Power Definitions in Time Domain
271(1)
8.4.3 Electric Power in Three-phase Systems
272(1)
8.4.4 Apparent Three-phase Power
272(1)
8.4.5 Instantaneous Active Three-phase Power
273(1)
8.4.6 Instantaneous Reactive Three-phase Power
273(1)
8.5 Power System Harmonics
273(3)
8.5.1 Linear and Nonlinear Loads
274(1)
8.5.2 Harmonic Current Flow
275(1)
8.6 Simulation of Power System for Different Fault Conditions
276(5)
8.7 Load Flow Studies
281(9)
8.7.1 Gauss-Seidel Method
283(4)
8.7.2 Newton---Raphson Method
287(3)
8.8 Power System Stability
290(1)
8.9 Load Frequency Control
291(2)
8.9.1 Existing Load Frequency Control Solutions
292(1)
8.10 Simulation Projects
293(11)
Chapter 9 Control System Engineering and Electrical Machines
304(57)
9.1 Introduction to Control System Engineering
304(1)
9.2 Time Response Analysis
305(15)
9.2.1 First-order System
305(3)
9.2.2 Second-order System
308(8)
9.2.3 Root Locus Technique
316(4)
9.3 Frequency Response Analysis
320(12)
9.3.1 Bode Plot
320(7)
9.3.2 Nyquist Plot
327(1)
9.3.3 Nichols Plot
327(5)
9.4 Introduction to Electrical Machines
332(1)
9.5 DC Machines
333(14)
9.5.1 Separately Excited DC Machines
333(7)
9.5.2 DC Series Motor
340(4)
9.5.3 DC Shunt Motor
344(3)
9.6 AC Motors
347(6)
9.6.1 Three-phase Induction Motor
347(4)
9.6.2 Three-phase Synchronous Motor
351(2)
9.7 Simulation Projects
353(8)
Chapter 10 Miscellaneous Applications
361(41)
10.1 Introduction to Communication Systems
361(2)
10.2 Modulation and Demodulation Techniques
363(16)
10.2.1 Amplitude Modulation and Demodulation
363(4)
10.2.2 Frequency Modulation and Demodulation
367(4)
10.2.3 Phase Modulation and Demodulation
371(4)
10.2.4 Digital Modulation Techniques
375(4)
10.3 Introduction to Computer Science
379(1)
10.4 Applications in Computer Science
379(7)
10.4.1 Animation
379(3)
10.4.2 Artificial Intelligence
382(4)
10.5 Mechanical Engineering Applications
386(4)
10.6 Simulation Projects
390(12)
Chapter 11 Simulation of Power Converters
402(37)
11.1 Introduction
402(1)
11.2 Introduction to Matrix Converter
402(2)
11.3 Basics of Matrix Converter
404(8)
11.3.1 Bidirectional Switches
405(2)
11.3.2 Commutation Problem
407(2)
11.3.3 Modulation Techniques
409(3)
11.4 Programming and Simulations of Matrix Converters
412(17)
11.5 Introduction to PWM Rectifier
429(10)
11.5.1 Control Techniques
430(1)
11.5.2 Simulation of PWM Converters
431(8)
Appendix A Fourier Series and Laplace Transform 439(5)
Appendix B Maximum Power Transfer Theorem and EMF Equation of Transformer and DC Machine 444(3)
Bibliography 447(2)
Index 449
Agam Kumar Tyagi is currently Assistant Professor, Department of Electrical Engineering, College of Engineering Studies, University of Petroleum & Energy Studies, Dehradun. An M Tech in Engineering Systems, Prof. Tyagi has taught in various engineering institutes including BITS Pilani and Amity University, Noida. He has published numerous articles in national and international journals of repute. Besides MATLAB and SIMULINK, he is also proficient in MULTISIM and SABER design software