Muutke küpsiste eelistusi

Matrix Structural Analysis 2nd Revised edition [Multiple-component retail product]

  • Formaat: Multiple-component retail product, 480 pages, kõrgus x laius x paksus: 257x210x21 mm, kaal: 924 g, Ill., Contains 1 Hardback and 1 CD-ROM
  • Ilmumisaeg: 09-Sep-1999
  • Kirjastus: John Wiley & Sons Ltd
  • ISBN-10: 0471129186
  • ISBN-13: 9780471129189
  • Multiple-component retail product
  • Hind: 219,24 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Multiple-component retail product, 480 pages, kõrgus x laius x paksus: 257x210x21 mm, kaal: 924 g, Ill., Contains 1 Hardback and 1 CD-ROM
  • Ilmumisaeg: 09-Sep-1999
  • Kirjastus: John Wiley & Sons Ltd
  • ISBN-10: 0471129186
  • ISBN-13: 9780471129189
Entire book and illustrative examples have been edited extensively, and several chapters repositioned.
* Imperial units are used instead of SI units in many of the examples and problems, particularly those of a nonlinear nature that have strong implications for design, since the SI system has not been fully assimilated in practice.
Symbols
xvii
Chapter 1 Introduction
1(8)
1.1 A Brief History of Structural Analysis
2(1)
1.2 Computer Programs
3(5)
1.2.1 Computational Flow and General Purpose Programs
4(2)
1.2.2 The Program MASTAN2
6(2)
References
8(1)
Chapter 2 Definitions and Concepts
9(22)
2.1 Degrees of Freedom
9(2)
2.2 Coordinate Systems and Conditions of Analysis
11(3)
2.3 Structure Idealization
14(2)
2.4 Axial Force Element--Force-Displacement Relationships
16(3)
2.4.1 Element Stiffness Equations
16(2)
2.4.2 Element Flexibility Equations
18(1)
2.5 Axial Force Element--Global Stiffness Equations
19(1)
2.6 Examples
20(6)
2.7 Problems
26(5)
Chapter 3 Formation of the Global Analysis Equations
31(25)
3.1 Direct Stiffness Method--The Basic Equations
31(8)
3.2 Direct Stiffness Method--The General Procedure
39(7)
3.3 Some Features of the Stiffness Equations
46(1)
3.4 Indeterminacy
47(2)
3.5 Problems
49(6)
References
55(1)
Chapter 4 Stiffness Analysis of Frames--I
56(37)
4.1 Stress-Strain Relationships
56(2)
4.2 Work and Energy
58(2)
4.3 Reciprocity
60(2)
4.4 Flexibility-Stiffness Transformations
62(4)
4.4.1 Stiffness to Flexibility Transformation
62(1)
4.4.2 Flexibility to Stiffness Transformation
63(3)
4.5 The Framework Element Stiffness Matrix
66(8)
4.5.1 Axial Force Member
67(1)
4.5.2 Pure Torsional Member
67(1)
4.5.3 Beam Bent About Its z Axis
68(4)
4.5.4 Beam Bent About Its y Axis
72(1)
4.5.5 Complete Element Stiffness Matrix
73(1)
4.6 A Commentary on Deformations and Displacement Variables
74(2)
4.6.1 Neglected Deformations
74(1)
4.6.2 Displacement Variables
75(1)
4.7 Examples
76(12)
4.8 Problems
88(4)
References
92(1)
Chapter 5 Stiffness Analysis of Frame--II
93(44)
5.1 Coordinate Transformations
93(15)
5.1.1 Transformation Matrices
94(4)
5.1.2 Transformation of Degrees of Freedom
98(1)
5.1.3 Transformations and Energy
98(2)
5.1.4 Rectangular Transformation Matrices
100(8)
5.2 Loads Between Nodal Points
108(12)
5.3 Self-Straining--Initial and Thermal Strain Conditions
120(10)
5.3.1 Initial Strain Problems
122(3)
5.3.2 Thermal Strain Problems
125(5)
5.4 Problems
130(7)
Chapter 6 Virtual Work Principles
137(37)
6.1 Principle of Virtual Displacements--Rigid Bodies
138(4)
6.2 Principle of Virtual Displacements--Deformable Bodies
142(2)
6.3 Virtual Displacement Analysis Procedure and Detailed Expressions
144(6)
6.3.1 General Procedure
144(1)
6.3.2 Internal Virtual Work
145(3)
6.3.3 External Virtual Work
148(2)
6.4 Construction of Analytical Solutions by the Principal of Virtual Displacements
150(8)
6.4.1 Exact Solutions
150(3)
6.4.2 Approximate Solutions and the Significance of the Chosen Virtual Displacements
153(1)
6.4.3 Examples
154(4)
6.5 Principle of Virtual Forces
158(12)
6.5.1 Equations of Equilibrium
158(3)
6.5.2 Characteristics of Virtual Force Systems
161(1)
6.5.3 Formulation of the Virtual Forces Principle
162(2)
6.5.4 Construction of Analytical Solutions by the Virtual Forces Principle
164(6)
6.6 Problems
170(3)
References
173(1)
Chapter 7 Virtual Work Principles in Framework Analysis
174(42)
7.1 Description of the Displaced State of Elements
175(6)
7.1.1 Definition of the Shape Function Mode of Description
175(1)
7.1.2 Formulation of Shape Functions
176(4)
7.1.3 Characteristics of Shape Functions
180(1)
7.2 Virtual Displacements in the Formulation of Element Stiffness Equations
181(3)
7.2.1 Construction of Expressions for Real and Virtual Displacements
181(1)
7.2.2 Virtual Displacements Formula for an Element Stiffness Matrix
182(1)
7.2.3 Application to Standard Axial, Torsional, and Flexural Elements
183(1)
7.3 Nonuniform Elements
184(2)
7.4 Nonuniform Torsion
186(8)
7.4.1 An Element Stiffness Matrix
187(3)
7.4.2 Application and Examples
190(4)
7.5 Loads Between Nodal Points and Initial Strain Effect--A General Approach
194(5)
7.6 Virtual Forces in the Formulation of Element Force-Displacement Equations
199(10)
7.6.1 Construction of Element Equations by the Principle of Virtual Forces
199(4)
7.6.2 Further Applications--Shearing Deformations and Curved Elements
203(6)
7.7 Problems
209(5)
References
214(2)
Chapter 8 Nonlinear Analysis of Frames--An Introduction
216(26)
8.1 Nonlinear Behavior, Analysis, and Design
216(18)
8.1.1 Sources of Nonlinearity
217(1)
8.1.2 Levels of Analysis
218(2)
8.1.3 Examples from Established Theory
220(10)
8.1.4 A Commentary on Stability
230(4)
8.2 A Matrix Approach
234(1)
8.3 The Equations of Analysis and Their Solution
235(4)
8.3.1 Equation Solution--The Options
236(1)
8.3.2 A Fundamental Problem
237(2)
8.4 Problems
239(2)
References
241(1)
Chapter 9 Geometric Nonlinear and Elastic Critical Load Analysis
242(27)
9.1 Geometric Stiffness Matrices for Planar Elements
243(11)
9.1.1 Axial Force Member
243(2)
9.1.2 Combined Bending and Axial Force
245(1)
9.1.3 Examples of Plane Structure Analysis
246(8)
9.2 Combined Torsion and Axial Force
254(3)
9.3 Three Dimensional Geometric Nonlinear Analysis--An Overview
257(2)
9.4 Examples of Three Dimensional Structure Analysis
259(4)
9.5 Problems
263(5)
References
268(1)
Chapter 10 Material Nonlinear Analysis
269(32)
10.1 Nonlinear Material Behavior
269(5)
10.1.1 Plasticity Theory
270(2)
10.1.2 Plastic Analysis
272(1)
10.1.3 Further Considerations
273(1)
10.2 A Plastic Hinge Method For Ductile Frames
274(4)
10.2.1 The Yield Surface and a Plastic Reduction Matrix
274(3)
10.2.2 Definition of the Yield Surface
277(1)
10.3 Inelastic Critical Load Theory
278(1)
10.4 Examples
279(1)
10.5 The Yield Surface Concept--A Brief Survey of Further Applications
290(4)
10.5.1 Spread of Plasticity
290(2)
10.5.2 Multiple Yield Surfaces
292(1)
10.5.3 Reinforced Concrete Members
293(1)
10.6 Problems
294(5)
References
299(2)
Chapter 11 Solution of Linear Algebraic Equations
301(38)
11.1 The Basic Choice--Direct Inversion versus Elimination or Iteration
302(1)
11.2 Direct Elimination Methods
302(8)
11.2.1 Gauss Elimination
304(3)
11.2.2 Cholesky Method
307(3)
11.3 Iterative Methods
310(6)
11.3.1 Gauss-Seidel and Jacobi Iterations
310(2)
11.3.2 Conjugate Gradient Method
312(4)
11.4 Sparseness and Bandedness
316(1)
11.5 Frontal Solvers
317(5)
11.6 Errors
322(3)
11.6.1 The Condition Number
326(1)
11.6.2 Estimate of Condition Number
327(2)
11.6.3 Error Estimates and Preconditioning
329(4)
11.6.4 Detecting, Controlling, and Correcting Error
333
11.7 Problems
325
References
337(2)
Chapter 12 Solution of Nonlinear Equilibrium Equations
339(36)
12.1 Incremental Analysis
339(1)
12.2 Incremental Single-Step Methods
340(5)
12.2.1 Euler Method
341(1)
12.2.2 Second-Order Runge-Kutta Methods
341(4)
12.3 Incremental-Iterative Methods
345(6)
12.3.1 Load Control Method
347(1)
12.3.2 Displacement Control Methods
348(1)
12.3.3 Work Control Method
349(1)
12.3.4 Constant Arc Length Methods
349(1)
12.3.5 Modified Iterative Technique
349(1)
12.3.6 Convergence Criteria
350(1)
12.4 Automatic Load Incrementation
351(1)
12.4.1 Change in Stiffness
351(1)
12.4.2 Number of Iterations
352(1)
12.5 Element Result Calculations
352(3)
12.5.1 Updating Deformed Geometry
352(1)
12.5.2 Force Recovery
352(3)
12.6 Plastic Hinge Constraints
355(3)
12.7 Limit Point and Post-Limit Analysis
358(2)
12.8 Critical Load Analysis--An Eigenproblem
360(10)
12.8.1 Reduction to Standard Form
361(2)
12.8.2 Polynomial Expansion
363(1)
12.8.3 Power Method
364(3)
12.8.4 Inverse Iteration
367(3)
12.9 Problems
370(3)
References
373(2)
Chapter 13 Special Analysis Procedures
375(44)
13.1 Condensation
376(1)
13.2 Substructuring
377(8)
13.3 Constraints
385(3)
13.4 Joint Coordinates
388(5)
13.5 Connections and Joints
393(10)
13.5.1 Flexible Connections
393(5)
13.5.2 Finite Joint Size
398(5)
13.6 Symmetry and Antisymmetry
403(5)
13.7 Reanalysis Techniques
408(5)
13.8 Problems
413(5)
References
418(1)
Appendix A Nonlinear Analysis--A Further Look
419(25)
A.1 Virtual Displacement Principles in Lagrangian Formulations
420(5)
A.2 An Updated Lagrangian Formulation and Its Linearization
425(1)
A.3 Application to the Framework Element
426(5)
A.4 Finite Rotations and Equilibrium in the Deformed Configuration
431(6)
A.4.1 The Finite Rotation Equation
432(1)
A.4.2 Application of the Finite Rotation Equation to the Framework Element
433(4)
A.5 Nonuniform Torsion
437(4)
References
441(3)
Appendix B On Rigid Body Motion and Natural Deformation
444(7)
B.1 The Nature of the Problem
444(1)
B.2 Distinguishing Between Rigid Body Motion and Natural Deformation
445(2)
B.3 Critique of Force Recovery Methods
447(3)
B.3.1 The Natural Deformation Approach
447(1)
B.3.2 The Elementary Approach
448(2)
References
450(1)
Author Index 451(2)
Subject Index 453


WILLIAM MCGUIRE is Professor of Civil Engineering, Emeritus, Cornell University. He is the author of a well-known text and reference book, Steel Structures. He is a member of the National Academy of Engineering and among his awards are the T. R. Higgins Lectureship of the American Institute of Steel Construction and the Shortridge Hardesty Award of the American Society of Civil Engineers. RICHARD H. GALLAGHER, PhD, Late President, Clarkson University, was a pioneer in the development of the finite element method. He was the author of Finite Element Analysis Fundamentals. He was a member of the National Academy of Engineering and the recipient of many awards, among them the ASME Medal, the highest honor of the American Society of Mechanical Engineers, and the American Society of Engineering Education's Lamme Medal. RONALD D. ZIEMIAN, PhD, is an Associate Professor of Civil and Environmental Engineering at Bucknell University. He is engaged in the development of computer software and active as a consulting structural engineer. He is the author of the structural theory section of the Structural Steel Designer's Handbook. He is the joint recipient of the American Society of Civil Engineers' premier award, the Norman Medal, for a paper based on his doctoral research on the inelastic behavior of steel structures.