|
|
xvii | |
|
|
1 | (8) |
|
1.1 A Brief History of Structural Analysis |
|
|
2 | (1) |
|
|
3 | (5) |
|
1.2.1 Computational Flow and General Purpose Programs |
|
|
4 | (2) |
|
1.2.2 The Program MASTAN2 |
|
|
6 | (2) |
|
|
8 | (1) |
|
Chapter 2 Definitions and Concepts |
|
|
9 | (22) |
|
|
9 | (2) |
|
2.2 Coordinate Systems and Conditions of Analysis |
|
|
11 | (3) |
|
2.3 Structure Idealization |
|
|
14 | (2) |
|
2.4 Axial Force Element--Force-Displacement Relationships |
|
|
16 | (3) |
|
2.4.1 Element Stiffness Equations |
|
|
16 | (2) |
|
2.4.2 Element Flexibility Equations |
|
|
18 | (1) |
|
2.5 Axial Force Element--Global Stiffness Equations |
|
|
19 | (1) |
|
|
20 | (6) |
|
|
26 | (5) |
|
Chapter 3 Formation of the Global Analysis Equations |
|
|
31 | (25) |
|
3.1 Direct Stiffness Method--The Basic Equations |
|
|
31 | (8) |
|
3.2 Direct Stiffness Method--The General Procedure |
|
|
39 | (7) |
|
3.3 Some Features of the Stiffness Equations |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (6) |
|
|
55 | (1) |
|
Chapter 4 Stiffness Analysis of Frames--I |
|
|
56 | (37) |
|
4.1 Stress-Strain Relationships |
|
|
56 | (2) |
|
|
58 | (2) |
|
|
60 | (2) |
|
4.4 Flexibility-Stiffness Transformations |
|
|
62 | (4) |
|
4.4.1 Stiffness to Flexibility Transformation |
|
|
62 | (1) |
|
4.4.2 Flexibility to Stiffness Transformation |
|
|
63 | (3) |
|
4.5 The Framework Element Stiffness Matrix |
|
|
66 | (8) |
|
|
67 | (1) |
|
4.5.2 Pure Torsional Member |
|
|
67 | (1) |
|
4.5.3 Beam Bent About Its z Axis |
|
|
68 | (4) |
|
4.5.4 Beam Bent About Its y Axis |
|
|
72 | (1) |
|
4.5.5 Complete Element Stiffness Matrix |
|
|
73 | (1) |
|
4.6 A Commentary on Deformations and Displacement Variables |
|
|
74 | (2) |
|
4.6.1 Neglected Deformations |
|
|
74 | (1) |
|
4.6.2 Displacement Variables |
|
|
75 | (1) |
|
|
76 | (12) |
|
|
88 | (4) |
|
|
92 | (1) |
|
Chapter 5 Stiffness Analysis of Frame--II |
|
|
93 | (44) |
|
5.1 Coordinate Transformations |
|
|
93 | (15) |
|
5.1.1 Transformation Matrices |
|
|
94 | (4) |
|
5.1.2 Transformation of Degrees of Freedom |
|
|
98 | (1) |
|
5.1.3 Transformations and Energy |
|
|
98 | (2) |
|
5.1.4 Rectangular Transformation Matrices |
|
|
100 | (8) |
|
5.2 Loads Between Nodal Points |
|
|
108 | (12) |
|
5.3 Self-Straining--Initial and Thermal Strain Conditions |
|
|
120 | (10) |
|
5.3.1 Initial Strain Problems |
|
|
122 | (3) |
|
5.3.2 Thermal Strain Problems |
|
|
125 | (5) |
|
|
130 | (7) |
|
Chapter 6 Virtual Work Principles |
|
|
137 | (37) |
|
6.1 Principle of Virtual Displacements--Rigid Bodies |
|
|
138 | (4) |
|
6.2 Principle of Virtual Displacements--Deformable Bodies |
|
|
142 | (2) |
|
6.3 Virtual Displacement Analysis Procedure and Detailed Expressions |
|
|
144 | (6) |
|
|
144 | (1) |
|
6.3.2 Internal Virtual Work |
|
|
145 | (3) |
|
6.3.3 External Virtual Work |
|
|
148 | (2) |
|
6.4 Construction of Analytical Solutions by the Principal of Virtual Displacements |
|
|
150 | (8) |
|
|
150 | (3) |
|
6.4.2 Approximate Solutions and the Significance of the Chosen Virtual Displacements |
|
|
153 | (1) |
|
|
154 | (4) |
|
6.5 Principle of Virtual Forces |
|
|
158 | (12) |
|
6.5.1 Equations of Equilibrium |
|
|
158 | (3) |
|
6.5.2 Characteristics of Virtual Force Systems |
|
|
161 | (1) |
|
6.5.3 Formulation of the Virtual Forces Principle |
|
|
162 | (2) |
|
6.5.4 Construction of Analytical Solutions by the Virtual Forces Principle |
|
|
164 | (6) |
|
|
170 | (3) |
|
|
173 | (1) |
|
Chapter 7 Virtual Work Principles in Framework Analysis |
|
|
174 | (42) |
|
7.1 Description of the Displaced State of Elements |
|
|
175 | (6) |
|
7.1.1 Definition of the Shape Function Mode of Description |
|
|
175 | (1) |
|
7.1.2 Formulation of Shape Functions |
|
|
176 | (4) |
|
7.1.3 Characteristics of Shape Functions |
|
|
180 | (1) |
|
7.2 Virtual Displacements in the Formulation of Element Stiffness Equations |
|
|
181 | (3) |
|
7.2.1 Construction of Expressions for Real and Virtual Displacements |
|
|
181 | (1) |
|
7.2.2 Virtual Displacements Formula for an Element Stiffness Matrix |
|
|
182 | (1) |
|
7.2.3 Application to Standard Axial, Torsional, and Flexural Elements |
|
|
183 | (1) |
|
|
184 | (2) |
|
|
186 | (8) |
|
7.4.1 An Element Stiffness Matrix |
|
|
187 | (3) |
|
7.4.2 Application and Examples |
|
|
190 | (4) |
|
7.5 Loads Between Nodal Points and Initial Strain Effect--A General Approach |
|
|
194 | (5) |
|
7.6 Virtual Forces in the Formulation of Element Force-Displacement Equations |
|
|
199 | (10) |
|
7.6.1 Construction of Element Equations by the Principle of Virtual Forces |
|
|
199 | (4) |
|
7.6.2 Further Applications--Shearing Deformations and Curved Elements |
|
|
203 | (6) |
|
|
209 | (5) |
|
|
214 | (2) |
|
Chapter 8 Nonlinear Analysis of Frames--An Introduction |
|
|
216 | (26) |
|
8.1 Nonlinear Behavior, Analysis, and Design |
|
|
216 | (18) |
|
8.1.1 Sources of Nonlinearity |
|
|
217 | (1) |
|
|
218 | (2) |
|
8.1.3 Examples from Established Theory |
|
|
220 | (10) |
|
8.1.4 A Commentary on Stability |
|
|
230 | (4) |
|
|
234 | (1) |
|
8.3 The Equations of Analysis and Their Solution |
|
|
235 | (4) |
|
8.3.1 Equation Solution--The Options |
|
|
236 | (1) |
|
8.3.2 A Fundamental Problem |
|
|
237 | (2) |
|
|
239 | (2) |
|
|
241 | (1) |
|
Chapter 9 Geometric Nonlinear and Elastic Critical Load Analysis |
|
|
242 | (27) |
|
9.1 Geometric Stiffness Matrices for Planar Elements |
|
|
243 | (11) |
|
|
243 | (2) |
|
9.1.2 Combined Bending and Axial Force |
|
|
245 | (1) |
|
9.1.3 Examples of Plane Structure Analysis |
|
|
246 | (8) |
|
9.2 Combined Torsion and Axial Force |
|
|
254 | (3) |
|
9.3 Three Dimensional Geometric Nonlinear Analysis--An Overview |
|
|
257 | (2) |
|
9.4 Examples of Three Dimensional Structure Analysis |
|
|
259 | (4) |
|
|
263 | (5) |
|
|
268 | (1) |
|
Chapter 10 Material Nonlinear Analysis |
|
|
269 | (32) |
|
10.1 Nonlinear Material Behavior |
|
|
269 | (5) |
|
|
270 | (2) |
|
|
272 | (1) |
|
10.1.3 Further Considerations |
|
|
273 | (1) |
|
10.2 A Plastic Hinge Method For Ductile Frames |
|
|
274 | (4) |
|
10.2.1 The Yield Surface and a Plastic Reduction Matrix |
|
|
274 | (3) |
|
10.2.2 Definition of the Yield Surface |
|
|
277 | (1) |
|
10.3 Inelastic Critical Load Theory |
|
|
278 | (1) |
|
|
279 | (1) |
|
10.5 The Yield Surface Concept--A Brief Survey of Further Applications |
|
|
290 | (4) |
|
10.5.1 Spread of Plasticity |
|
|
290 | (2) |
|
10.5.2 Multiple Yield Surfaces |
|
|
292 | (1) |
|
10.5.3 Reinforced Concrete Members |
|
|
293 | (1) |
|
|
294 | (5) |
|
|
299 | (2) |
|
Chapter 11 Solution of Linear Algebraic Equations |
|
|
301 | (38) |
|
11.1 The Basic Choice--Direct Inversion versus Elimination or Iteration |
|
|
302 | (1) |
|
11.2 Direct Elimination Methods |
|
|
302 | (8) |
|
|
304 | (3) |
|
|
307 | (3) |
|
|
310 | (6) |
|
11.3.1 Gauss-Seidel and Jacobi Iterations |
|
|
310 | (2) |
|
11.3.2 Conjugate Gradient Method |
|
|
312 | (4) |
|
11.4 Sparseness and Bandedness |
|
|
316 | (1) |
|
|
317 | (5) |
|
|
322 | (3) |
|
11.6.1 The Condition Number |
|
|
326 | (1) |
|
11.6.2 Estimate of Condition Number |
|
|
327 | (2) |
|
11.6.3 Error Estimates and Preconditioning |
|
|
329 | (4) |
|
11.6.4 Detecting, Controlling, and Correcting Error |
|
|
333 | |
|
|
325 | |
|
|
337 | (2) |
|
Chapter 12 Solution of Nonlinear Equilibrium Equations |
|
|
339 | (36) |
|
12.1 Incremental Analysis |
|
|
339 | (1) |
|
12.2 Incremental Single-Step Methods |
|
|
340 | (5) |
|
|
341 | (1) |
|
12.2.2 Second-Order Runge-Kutta Methods |
|
|
341 | (4) |
|
12.3 Incremental-Iterative Methods |
|
|
345 | (6) |
|
12.3.1 Load Control Method |
|
|
347 | (1) |
|
12.3.2 Displacement Control Methods |
|
|
348 | (1) |
|
12.3.3 Work Control Method |
|
|
349 | (1) |
|
12.3.4 Constant Arc Length Methods |
|
|
349 | (1) |
|
12.3.5 Modified Iterative Technique |
|
|
349 | (1) |
|
12.3.6 Convergence Criteria |
|
|
350 | (1) |
|
12.4 Automatic Load Incrementation |
|
|
351 | (1) |
|
12.4.1 Change in Stiffness |
|
|
351 | (1) |
|
12.4.2 Number of Iterations |
|
|
352 | (1) |
|
12.5 Element Result Calculations |
|
|
352 | (3) |
|
12.5.1 Updating Deformed Geometry |
|
|
352 | (1) |
|
|
352 | (3) |
|
12.6 Plastic Hinge Constraints |
|
|
355 | (3) |
|
12.7 Limit Point and Post-Limit Analysis |
|
|
358 | (2) |
|
12.8 Critical Load Analysis--An Eigenproblem |
|
|
360 | (10) |
|
12.8.1 Reduction to Standard Form |
|
|
361 | (2) |
|
12.8.2 Polynomial Expansion |
|
|
363 | (1) |
|
|
364 | (3) |
|
|
367 | (3) |
|
|
370 | (3) |
|
|
373 | (2) |
|
Chapter 13 Special Analysis Procedures |
|
|
375 | (44) |
|
|
376 | (1) |
|
|
377 | (8) |
|
|
385 | (3) |
|
|
388 | (5) |
|
13.5 Connections and Joints |
|
|
393 | (10) |
|
13.5.1 Flexible Connections |
|
|
393 | (5) |
|
|
398 | (5) |
|
13.6 Symmetry and Antisymmetry |
|
|
403 | (5) |
|
13.7 Reanalysis Techniques |
|
|
408 | (5) |
|
|
413 | (5) |
|
|
418 | (1) |
|
Appendix A Nonlinear Analysis--A Further Look |
|
|
419 | (25) |
|
A.1 Virtual Displacement Principles in Lagrangian Formulations |
|
|
420 | (5) |
|
A.2 An Updated Lagrangian Formulation and Its Linearization |
|
|
425 | (1) |
|
A.3 Application to the Framework Element |
|
|
426 | (5) |
|
A.4 Finite Rotations and Equilibrium in the Deformed Configuration |
|
|
431 | (6) |
|
A.4.1 The Finite Rotation Equation |
|
|
432 | (1) |
|
A.4.2 Application of the Finite Rotation Equation to the Framework Element |
|
|
433 | (4) |
|
|
437 | (4) |
|
|
441 | (3) |
|
Appendix B On Rigid Body Motion and Natural Deformation |
|
|
444 | (7) |
|
B.1 The Nature of the Problem |
|
|
444 | (1) |
|
B.2 Distinguishing Between Rigid Body Motion and Natural Deformation |
|
|
445 | (2) |
|
B.3 Critique of Force Recovery Methods |
|
|
447 | (3) |
|
B.3.1 The Natural Deformation Approach |
|
|
447 | (1) |
|
B.3.2 The Elementary Approach |
|
|
448 | (2) |
|
|
450 | (1) |
Author Index |
|
451 | (2) |
Subject Index |
|
453 | |