Preface |
|
ix | |
Notation |
|
xi | |
|
Chapter 1 Maximal Functions |
|
|
1 | (24) |
|
1.1 Hardy-Littlewood maximal function |
|
|
1 | (5) |
|
1.2 Hardy-Littlewood-Wiener maximal function theorem |
|
|
6 | (4) |
|
1.3 Lebesgue differentiation theorem |
|
|
10 | (3) |
|
|
13 | (2) |
|
1.5 Restricted maximal function |
|
|
15 | (2) |
|
|
17 | (3) |
|
1.7 Fractional maximal function |
|
|
20 | (3) |
|
|
23 | (2) |
|
Chapter 2 Lipschitz and Sobolev Functions |
|
|
25 | (22) |
|
|
25 | (4) |
|
|
29 | (2) |
|
2.3 Approximation and calculus in Sobolev spaces |
|
|
31 | (4) |
|
2.4 Sobolev spaces with zero boundary values |
|
|
35 | (2) |
|
2.5 Weak convergence and Sobolev spaces |
|
|
37 | (6) |
|
|
43 | (3) |
|
|
46 | (1) |
|
Chapter 3 Sobolev and Poincare Inequalities |
|
|
47 | (16) |
|
3.1 Pointwise estimates for Lipschitz functions |
|
|
47 | (3) |
|
3.2 Sobolev-Gagliardo-Nirenberg inequality |
|
|
50 | (2) |
|
3.3 Sobolev Poincare inequalities |
|
|
52 | (5) |
|
3.4 Poincare inequalities for zero boundary values |
|
|
57 | (1) |
|
|
58 | (4) |
|
|
62 | (1) |
|
Chapter 4 Pointwise Inequalities for Sobolev Functions |
|
|
63 | (22) |
|
4.1 Pointwise characterization of Sobolev spaces |
|
|
63 | (3) |
|
4.2 Lipschitz truncation of Sobolev functions |
|
|
66 | (3) |
|
4.3 Campanato and Morrey approaches to Sobolev spaces |
|
|
69 | (4) |
|
4.4 Maximal operator on Sobolev spaces |
|
|
73 | (2) |
|
4.5 Maximal function with respect to an open set |
|
|
75 | (4) |
|
4.6 Fractional maximal operator on Sobolev spaces |
|
|
79 | (3) |
|
|
82 | (3) |
|
Chapter 5 Capacities and Fine Properties of Sobolev Functions |
|
|
85 | (30) |
|
|
85 | (3) |
|
5.2 Estimates for capacity |
|
|
88 | (2) |
|
5.3 Quasicontinuity and fine properties of capacity |
|
|
90 | (4) |
|
5.4 Lebesgue points of Sobolev functions |
|
|
94 | (3) |
|
5.5 Sobolev spaces with zero boundary values revisited |
|
|
97 | (4) |
|
|
101 | (4) |
|
5.7 Capacity and Hausdorff content |
|
|
105 | (3) |
|
5.8 Lipschitz test functions for variational capacity |
|
|
108 | (2) |
|
|
110 | (3) |
|
|
113 | (2) |
|
Chapter 6 Hardy's Inequalities |
|
|
115 | (22) |
|
6.1 Introduction to Hardy's inequalities |
|
|
115 | (3) |
|
6.2 Measure density and Hardy's inequality |
|
|
118 | (3) |
|
6.3 Self-improvement of Hardy's inequality |
|
|
121 | (3) |
|
6.4 Capacity density and pointwise Hardy inequalities |
|
|
124 | (5) |
|
|
129 | (3) |
|
6.6 Stability of Sobolev spaces with zero boundary values |
|
|
132 | (3) |
|
|
135 | (2) |
|
Chapter 7 Density Conditions |
|
|
137 | (24) |
|
7.1 Hausdorff content density |
|
|
137 | (1) |
|
7.2 Ahlfors David regular sets |
|
|
138 | (2) |
|
7.3 Lower dimension and capacity density |
|
|
140 | (4) |
|
7.4 Density conditions and Hardy's inequality in the borderline case |
|
|
144 | (3) |
|
7.5 Self-improvement of the capacity density condition |
|
|
147 | (1) |
|
7.6 Truncation and absorption |
|
|
148 | (3) |
|
7.7 Local Hardy inequality |
|
|
151 | (4) |
|
|
155 | (3) |
|
|
158 | (3) |
|
Chapter 8 Muckenhoupt Weights |
|
|
161 | (34) |
|
|
161 | (1) |
|
8.2 Dyadic cubes and the Calderon Zygmund lemma |
|
|
162 | (3) |
|
8.3 Self-improvement of weighted norm inequalities |
|
|
165 | (3) |
|
8.4 Muckenhoupt Ap weights for 1 > p < ∞ |
|
|
168 | (5) |
|
8.5 Reverse Holder inequalities for Muckenhoupt weights |
|
|
173 | (6) |
|
8.6 Ai weights and Coifman - Rochberg lemma |
|
|
179 | (4) |
|
8.7 Self-improvement of reverse Holder inequalities |
|
|
183 | (5) |
|
8.8 General self-improvement result for reverse Holder inequalities |
|
|
188 | (5) |
|
|
193 | (2) |
|
Chapter 9 Weighted Maximal and Poincare Inequalities |
|
|
195 | (30) |
|
9.1 Poincare inequalities on cubes |
|
|
195 | (3) |
|
9.2 Single weight maximal and Poincare inequalities |
|
|
198 | (3) |
|
9.3 Weighted local Fefferman-Stein inequalities |
|
|
201 | (4) |
|
9.4 Two weight maximal inequalities |
|
|
205 | (4) |
|
9.5 Two weight Poincare inequalities |
|
|
209 | (2) |
|
9.6 Local-to-global inequalities on open sets |
|
|
211 | (5) |
|
9.7 BMO and John Nirenberg inequality |
|
|
216 | (5) |
|
9.8 Maximal functions and BMO |
|
|
221 | (2) |
|
|
223 | (2) |
|
Chapter 10 Distance Weights and Hardy-Sobolev Inequalities |
|
|
225 | (30) |
|
|
225 | (3) |
|
10.2 Ap properties of distance functions |
|
|
228 | (4) |
|
|
232 | (6) |
|
10.4 Distance weighted Poincare inequalities |
|
|
238 | (2) |
|
10.5 Hardy Sobolev inequalities |
|
|
240 | (3) |
|
10.6 Necessary conditions for Hardy Sobolev inequalities |
|
|
243 | (4) |
|
|
247 | (5) |
|
|
252 | (3) |
|
Chapter 11 The p-Laplace Equation |
|
|
255 | (32) |
|
|
255 | (5) |
|
11.2 A variational approach |
|
|
260 | (4) |
|
11.3 Weak super- and subsolutions |
|
|
264 | (2) |
|
|
266 | (6) |
|
11.5 Local boundedness of weak solutions |
|
|
272 | (6) |
|
11.6 Harnack's inequality |
|
|
278 | (4) |
|
11.7 Local Holder continuity |
|
|
282 | (4) |
|
|
286 | (1) |
|
Chapter 12 Stability Results for the p-Laplace Equation |
|
|
287 | (30) |
|
12.1 Higher integrability of the gradient |
|
|
287 | (8) |
|
12.2 Stability with respect to the exponent |
|
|
295 | (11) |
|
|
306 | (8) |
|
|
314 | (3) |
Bibliography |
|
317 | (18) |
Index |
|
335 | |