Muutke küpsiste eelistusi

Maximal Function Methods for Sobolev Spaces [Pehme köide]

  • Formaat: Paperback / softback, 354 pages, kõrgus x laius: 254x178 mm, kaal: 550 g
  • Sari: Mathematical Surveys and Monographs
  • Ilmumisaeg: 30-Aug-2022
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470465752
  • ISBN-13: 9781470465759
Teised raamatud teemal:
  • Formaat: Paperback / softback, 354 pages, kõrgus x laius: 254x178 mm, kaal: 550 g
  • Sari: Mathematical Surveys and Monographs
  • Ilmumisaeg: 30-Aug-2022
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470465752
  • ISBN-13: 9781470465759
Teised raamatud teemal:
This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.

The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
Preface ix
Notation xi
Chapter 1 Maximal Functions
1(24)
1.1 Hardy-Littlewood maximal function
1(5)
1.2 Hardy-Littlewood-Wiener maximal function theorem
6(4)
1.3 Lebesgue differentiation theorem
10(3)
1.4 A theorem of Stein
13(2)
1.5 Restricted maximal function
15(2)
1.6 Riesz potential
17(3)
1.7 Fractional maximal function
20(3)
1.8 Notes
23(2)
Chapter 2 Lipschitz and Sobolev Functions
25(22)
2.1 Lipschitz functions
25(4)
2.2 Sobolev spaces
29(2)
2.3 Approximation and calculus in Sobolev spaces
31(4)
2.4 Sobolev spaces with zero boundary values
35(2)
2.5 Weak convergence and Sobolev spaces
37(6)
2.6 Difference quotients
43(3)
2.7 Notes
46(1)
Chapter 3 Sobolev and Poincare Inequalities
47(16)
3.1 Pointwise estimates for Lipschitz functions
47(3)
3.2 Sobolev-Gagliardo-Nirenberg inequality
50(2)
3.3 Sobolev Poincare inequalities
52(5)
3.4 Poincare inequalities for zero boundary values
57(1)
3.5 Morrey's inequality
58(4)
3.6 Notes
62(1)
Chapter 4 Pointwise Inequalities for Sobolev Functions
63(22)
4.1 Pointwise characterization of Sobolev spaces
63(3)
4.2 Lipschitz truncation of Sobolev functions
66(3)
4.3 Campanato and Morrey approaches to Sobolev spaces
69(4)
4.4 Maximal operator on Sobolev spaces
73(2)
4.5 Maximal function with respect to an open set
75(4)
4.6 Fractional maximal operator on Sobolev spaces
79(3)
4.7 Notes
82(3)
Chapter 5 Capacities and Fine Properties of Sobolev Functions
85(30)
5.1 Sobolev capacity
85(3)
5.2 Estimates for capacity
88(2)
5.3 Quasicontinuity and fine properties of capacity
90(4)
5.4 Lebesgue points of Sobolev functions
94(3)
5.5 Sobolev spaces with zero boundary values revisited
97(4)
5.6 Variational capacity
101(4)
5.7 Capacity and Hausdorff content
105(3)
5.8 Lipschitz test functions for variational capacity
108(2)
5.9 Maz'ya's inequality
110(3)
5.10 Notes
113(2)
Chapter 6 Hardy's Inequalities
115(22)
6.1 Introduction to Hardy's inequalities
115(3)
6.2 Measure density and Hardy's inequality
118(3)
6.3 Self-improvement of Hardy's inequality
121(3)
6.4 Capacity density and pointwise Hardy inequalities
124(5)
6.5 Wannebo's approach
129(3)
6.6 Stability of Sobolev spaces with zero boundary values
132(3)
6.7 Notes
135(2)
Chapter 7 Density Conditions
137(24)
7.1 Hausdorff content density
137(1)
7.2 Ahlfors David regular sets
138(2)
7.3 Lower dimension and capacity density
140(4)
7.4 Density conditions and Hardy's inequality in the borderline case
144(3)
7.5 Self-improvement of the capacity density condition
147(1)
7.6 Truncation and absorption
148(3)
7.7 Local Hardy inequality
151(4)
7.8 Concluding argument
155(3)
7.9 Notes
158(3)
Chapter 8 Muckenhoupt Weights
161(34)
8.1 Doubling weights
161(1)
8.2 Dyadic cubes and the Calderon Zygmund lemma
162(3)
8.3 Self-improvement of weighted norm inequalities
165(3)
8.4 Muckenhoupt Ap weights for 1 > p < ∞
168(5)
8.5 Reverse Holder inequalities for Muckenhoupt weights
173(6)
8.6 Ai weights and Coifman - Rochberg lemma
179(4)
8.7 Self-improvement of reverse Holder inequalities
183(5)
8.8 General self-improvement result for reverse Holder inequalities
188(5)
8.9 Notes
193(2)
Chapter 9 Weighted Maximal and Poincare Inequalities
195(30)
9.1 Poincare inequalities on cubes
195(3)
9.2 Single weight maximal and Poincare inequalities
198(3)
9.3 Weighted local Fefferman-Stein inequalities
201(4)
9.4 Two weight maximal inequalities
205(4)
9.5 Two weight Poincare inequalities
209(2)
9.6 Local-to-global inequalities on open sets
211(5)
9.7 BMO and John Nirenberg inequality
216(5)
9.8 Maximal functions and BMO
221(2)
9.9 Notes
223(2)
Chapter 10 Distance Weights and Hardy-Sobolev Inequalities
225(30)
10.1 Aikawa condition
225(3)
10.2 Ap properties of distance functions
228(4)
10.3 Assouad dimension
232(6)
10.4 Distance weighted Poincare inequalities
238(2)
10.5 Hardy Sobolev inequalities
240(3)
10.6 Necessary conditions for Hardy Sobolev inequalities
243(4)
10.7 Testing conditions
247(5)
10.8 Notes
252(3)
Chapter 11 The p-Laplace Equation
255(32)
11.1 Weak solutions
255(5)
11.2 A variational approach
260(4)
11.3 Weak super- and subsolutions
264(2)
11.4 Energy estimates
266(6)
11.5 Local boundedness of weak solutions
272(6)
11.6 Harnack's inequality
278(4)
11.7 Local Holder continuity
282(4)
11.8 Notes
286(1)
Chapter 12 Stability Results for the p-Laplace Equation
287(30)
12.1 Higher integrability of the gradient
287(8)
12.2 Stability with respect to the exponent
295(11)
12.3 Very weak solutions
306(8)
12.4 Notes
314(3)
Bibliography 317(18)
Index 335
Juha Kinnunen, Aalto University, Finland.

Juha Lehrback, University of Jyvaskyla, Finland.

Antti Vahakangas, University of Jyvaskyla, Finland.