Muutke küpsiste eelistusi

Measure of Non-Compactness for Integral Operators in Weighted Lebesgue Spaces [Kõva köide]

  • Formaat: Hardback, 121 pages, kõrgus x laius: 180x260 mm, kaal: 500 g
  • Ilmumisaeg: 01-Sep-2009
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-10: 1606928864
  • ISBN-13: 9781606928868
Teised raamatud teemal:
  • Formaat: Hardback, 121 pages, kõrgus x laius: 180x260 mm, kaal: 500 g
  • Ilmumisaeg: 01-Sep-2009
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-10: 1606928864
  • ISBN-13: 9781606928868
Teised raamatud teemal:
Meskhi (A. Razmadze Mathematical Institute, Tbilisi, Georgia) systematically and in great detail analyzes a class of specific integral operators from the boundedness/compactness or non-compactness point of view, emphasizing important tools for solving a variety of problems in several areas of mathematics and its applications. The problems related estimating the measure of the non-compactness for differential and integral operations acting between Banach spaces, he says, are closely connected with eigenvalue estimates and other spectral properties for these operators. After setting out the basic ingredients, he covers maximal operators, kernel operators on cones, potential and identity operators, generalized one-sided potentials in Lp(x) spaces, and singular integrals. He posits readers ranging from researchers in functional and harmonic analysis to specialists in applied mathematics and graduate students. Annotation ©2010 Book News, Inc., Portland, OR (booknews.com)
Preface vii
Basic Notation xi
Basic Ingredients
1(26)
Homogeneous Groups
1(2)
Measure of Non-compactness
3(8)
Hardy-type Transforms
11(1)
Lp(x) Spaces
12(10)
Schatten-von Neumann Ideals
22(1)
Singular Integrals in Weighted Lebesgue Spaces
23(2)
Notes and Comments on
Chapter 1
25(2)
Maximal Operators
27(10)
Maximal Functions on Euclidean Spaces
27(5)
One-sided Maximal Functions
32(2)
Maximal Operator on Homogeneous Groups
34(1)
Notes and Comments on
Chapter 2
35(2)
Kernel Operators on Cones
37(14)
Boundedness
39(4)
Compactness
43(2)
Schatten-von Neumann norm Estimates
45(2)
Measure of Non-compactness
47(2)
Convolution-type Operators with Radial Kernels
49(1)
Notes and Comments on
Chapter 3
50(1)
Potential and Identity Operators
51(20)
Riesz Potentials
51(4)
Truncated Potentials
55(3)
One-sided Potentials
58(2)
Poisson Integrals
60(3)
Sobolev Embeddings
63(2)
Identity Operator
65(3)
Partial Sums of Fourier Series
68(1)
Notes and Comments on
Chapter 4
69(2)
Generalized One-sided Potentials in Lp(x) Spaces
71(12)
Boundedness
71(6)
Compactness
77(3)
Measure of Non-compactness
80(2)
Notes and Comments on
Chapter 5
82(1)
Singular Integrals
83(20)
Hilbert Transforms
83(3)
Cauchy Singular Integrals
86(2)
Riesz Transforms
88(2)
Calderon-Zygmund Operators
90(1)
Hilbert Transforms in Lp(x) Spaces
91(7)
Cauchy Singular Integrals in Lp(x) Spaces
98(4)
Notes and Comments on
Chapter 6
102(1)
References 103(16)
Index 119