Preface |
|
xv | |
Authors |
|
xix | |
Chapter 1 Error Theory |
|
1 | (38) |
|
|
1 | (5) |
|
|
1 | (1) |
|
1.1.2 Classification of Measurement |
|
|
2 | (4) |
|
1.1.2.1 Concept of Measurement |
|
|
2 | (1) |
|
1.1.2.2 Methods of Measurement |
|
|
3 | (1) |
|
1.1.2.3 Equal Precision and Unequal Precision Measurements |
|
|
4 | (1) |
|
1.1.2.4 Measurements of Static and Dynamic Objects |
|
|
5 | (1) |
|
|
6 | (2) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.2.3 Error Classification |
|
|
7 | (1) |
|
1.2.4 Quality of Measurement Data |
|
|
8 | (1) |
|
|
8 | (1) |
|
1.3 Random Error in Independent Measurements with Equal Precision |
|
|
8 | (9) |
|
1.3.1 Postulate of Random Error and Gaussian Law of Error |
|
|
9 | (1) |
|
1.3.2 Numerical Characteristics of a Random Error |
|
|
10 | (3) |
|
|
10 | (1) |
|
1.3.2.2 Standard Deviation |
|
|
11 | (1) |
|
1.3.2.3 Estimation of Standard Deviation |
|
|
11 | (1) |
|
1.3.2.4 Estimation of Mean and Standard Deviation |
|
|
12 | (1) |
|
1.3.3 Distributions and Precision Indices of Random Errors |
|
|
13 | (4) |
|
1.3.3.1 Distributions of Random Errors |
|
|
13 | (2) |
|
1.3.3.2 Precision Index of Measurement |
|
|
15 | (2) |
|
|
17 | (5) |
|
1.4.1 Causes of Systematic Errors |
|
|
17 | (1) |
|
1.4.2 Variation Rules of Systematic Errors |
|
|
18 | (1) |
|
1.4.3 Identification of Systematic Errors |
|
|
19 | (2) |
|
1.4.4 Reduction and Elimination of Systematic Errors |
|
|
21 | (1) |
|
|
22 | (6) |
|
1.5.1 Causes and Avoidance of Negligent Errors |
|
|
23 | (1) |
|
1.5.1.1 Causes of Negligent Errors |
|
|
23 | (1) |
|
1.5.1.2 Avoidance of Negligent Errors |
|
|
23 | (1) |
|
1.5.2 Negligent Errors in Measurement Data of Static Objects |
|
|
23 | (5) |
|
1.5.2.1 Romannovschi Criterion |
|
|
23 | (4) |
|
|
27 | (1) |
|
1.5.2.3 Summary of Identification Criteria |
|
|
28 | (1) |
|
|
28 | (5) |
|
1.6.1 Uncertainty of Measurement |
|
|
28 | (3) |
|
1.6.1.1 Estimation of Measurement Uncertainty |
|
|
29 | (1) |
|
1.6.1.2 Propagation of Uncertainties |
|
|
29 | (2) |
|
|
31 | (9) |
|
1.6.2.1 Functional Systematic Errors |
|
|
31 | (1) |
|
1.6.2.2 Functional Random Errors |
|
|
31 | (2) |
|
1.7 Steps of Data Processing: Static Measurement Data |
|
|
33 | (3) |
|
|
36 | (3) |
Chapter 2 Parametric Representations Of Functions To Be Estimated |
|
39 | (54) |
|
|
39 | (1) |
|
2.2 Polynomial Representations of Functions to Be Estimated |
|
|
40 | (21) |
|
2.2.1 Weierstrass Theorem |
|
|
41 | (2) |
|
2.2.2 Best Approximation Polynomials |
|
|
43 | (1) |
|
2.2.3 Best Approximation of Induced Functions |
|
|
44 | (2) |
|
2.2.4 Degrees of Best Approximation Polynomials |
|
|
46 | (2) |
|
2.2.5 Bases of Polynomial Representations of Functions to Be Estimated |
|
|
48 | (13) |
|
2.2.5.1 Significance of Basis Selection |
|
|
48 | (1) |
|
2.2.5.2 Chebyshev Polynomials |
|
|
49 | (1) |
|
2.2.5.3 Bases of Interpolation Polynomials of Order n |
|
|
50 | (4) |
|
2.2.5.4 Chebyshev Polynomial Bases |
|
|
54 | (5) |
|
2.2.5.5 Bases and Coefficients |
|
|
59 | (2) |
|
2.3 Spline Representations of Functions to Be Estimated |
|
|
61 | (19) |
|
2.3.1 Basic Concept of Spline Functions |
|
|
61 | (4) |
|
2.3.2 Properties of Cubic Spline Functions |
|
|
65 | (8) |
|
|
73 | (5) |
|
2.3.4 Bases of Spline Representations of Functions to Be Estimated |
|
|
78 | (2) |
|
2.4 Using General Solutions of Ordinary Differential Equations to Represent Functions to Be Estimated |
|
|
80 | (5) |
|
|
80 | (1) |
|
2.4.2 General Solutions of Linear Ordinary Differential Equations |
|
|
81 | (2) |
|
2.4.3 General Solutions of Nonlinear Equation or Equations |
|
|
83 | (2) |
|
|
85 | (7) |
|
2.5.1 Empirical Formulas from Scientific Laws |
|
|
86 | (1) |
|
2.5.2 Empirical Formulas from Experience |
|
|
87 | (1) |
|
2.5.3 Empirical Formulas of Mechanical Type |
|
|
88 | (1) |
|
2.5.4 Empirical Formulas of Progressive Type |
|
|
89 | (3) |
|
|
92 | (1) |
Chapter 3 Methods Of Modern Regression Analysis |
|
93 | (136) |
|
|
93 | (5) |
|
3.2 Basic Methods of Linear Regression Analysis |
|
|
98 | (20) |
|
3.2.1 Point Estimates of Parameters |
|
|
98 | (6) |
|
3.2.2 Hypothesis Tests on Regression Coefficients |
|
|
104 | (5) |
|
3.2.3 Interval Estimates of Parameters |
|
|
109 | (5) |
|
3.2.4 Least Squares Estimates and Multicollinearity |
|
|
114 | (4) |
|
3.3 Optimization of Regression Models |
|
|
118 | (13) |
|
3.3.1 Dynamic Measurement Data and Regression Models |
|
|
119 | (5) |
|
3.3.2 Compound Models for Signals and Systematic Errors |
|
|
124 | (7) |
|
|
131 | (26) |
|
3.4.1 Consequences of Variable Selection |
|
|
134 | (4) |
|
3.4.2 Criteria of Variable Selection |
|
|
138 | (8) |
|
3.4.3 Fast Algorithms to Select Optimal Reduced Regression Model |
|
|
146 | (10) |
|
|
156 | (1) |
|
3.5 Biased Estimation in Linear Regression Models |
|
|
157 | (18) |
|
|
157 | (1) |
|
3.5.2 Biased Estimates of Compression Type |
|
|
158 | (3) |
|
3.5.3 A New Method to Determine Ridge Parameters |
|
|
161 | (5) |
|
|
166 | (4) |
|
|
170 | (5) |
|
3.6 The Method of Point-by-Point Elimination for Outliers |
|
|
175 | (15) |
|
|
175 | (1) |
|
3.6.2 Derivation of Criteria |
|
|
176 | (11) |
|
|
187 | (3) |
|
3.7 Efficiency of Parameter Estimation in Linear Regression Models |
|
|
190 | (10) |
|
|
190 | (4) |
|
3.7.2 Efficiency of Parameter Estimation in Linear Regression Models with One Variable |
|
|
194 | (3) |
|
3.7.3 Efficiency of Parameter Estimation in Multiple Linear Regression Models |
|
|
197 | (3) |
|
3.8 Methods of Nonlinear Regression Analysis |
|
|
200 | (13) |
|
3.8.1 Models of Nonlinear Regression Analysis |
|
|
200 | (3) |
|
3.8.2 Methods of Parameter Estimation |
|
|
203 | (10) |
|
3.9 Additional Information |
|
|
213 | (13) |
|
3.9.1 Sources of Additional Information |
|
|
213 | (4) |
|
3.9.2 Applications of Additional Information |
|
|
217 | (9) |
|
|
226 | (3) |
Chapter 4 Methods Of Time Series Analysis |
|
229 | (70) |
|
4.1 Introduction to Time Series |
|
|
229 | (1) |
|
4.1.1 Time Series and Random Process |
|
|
229 | (1) |
|
4.1.2 Time Series Analysis |
|
|
229 | (1) |
|
4.2 Stationary Time Series Models |
|
|
230 | (21) |
|
4.2.1 Stationary Random Processes |
|
|
230 | (2) |
|
4.2.2 Autoregressive Models |
|
|
232 | (5) |
|
4.2.3 Moving Average Model |
|
|
237 | (3) |
|
|
240 | (5) |
|
4.2.5 Partial Correlation Function of a Stationary Model |
|
|
245 | (6) |
|
4.3 Parameter Estimation of Stationary Time Series Models |
|
|
251 | (9) |
|
4.3.1 Estimation of Autocovariance Functions and Autocorrelation Functions |
|
|
251 | (2) |
|
4.3.2 Parameter Estimation of AR(p) Models |
|
|
253 | (2) |
|
4.3.2.1 Moment Estimation of Parameters in AR Models |
|
|
253 | (1) |
|
4.3.2.2 Least Squares Estimation of Parameters in AR Models |
|
|
254 | (1) |
|
4.3.3 Parameter Estimation of MA(g) Models |
|
|
255 | (3) |
|
4.3.3.1 Linear Iteration Method |
|
|
256 | (1) |
|
4.3.3.2 Newton-Raphson Algorithm |
|
|
256 | (2) |
|
4.3.4 Parameter Estimation of ARMA(p,q) Models |
|
|
258 | (2) |
|
4.3.4.1 Moment Estimation |
|
|
258 | (1) |
|
4.3.4.2 Nonlinear Least Squares Estimation |
|
|
259 | (1) |
|
4.4 Tests of Observational Data from a Time Series |
|
|
260 | (6) |
|
|
261 | (1) |
|
|
262 | (1) |
|
4.4.3 Stationarity Test: Reverse Method |
|
|
263 | (3) |
|
4.4.3.1 Testing the Mean Stationarity |
|
|
265 | (1) |
|
4.4.3.2 Testing the Variance Stationarity |
|
|
265 | (1) |
|
4.5 Modeling Stationary Time Series |
|
|
266 | (4) |
|
4.5.1 Model Selection: Box-Jenkins Method |
|
|
266 | (1) |
|
4.5.2 AIC Criterion for Model Order Determination |
|
|
267 | (1) |
|
4.5.2.1 AIC for AR Models |
|
|
268 | (1) |
|
4.5.2.2 AIC for MA and ARMA Models |
|
|
268 | (1) |
|
|
268 | (2) |
|
4.5.3.1 AR Models Testing |
|
|
269 | (1) |
|
4.5.3.2 MA Models Testing |
|
|
269 | (1) |
|
4.5.3.3 ARMA Models Testing |
|
|
269 | (1) |
|
4.6 Nonstationary Time Series |
|
|
270 | (20) |
|
4.6.1 Nonstationarity of Time Series |
|
|
270 | (1) |
|
4.6.1.1 Processing Variance Nonstationarity |
|
|
270 | (1) |
|
4.6.1.2 Processing Mean Nonstationarity |
|
|
271 | (1) |
|
|
271 | (2) |
|
4.6.2.1 Definition of ARIMA Model |
|
|
271 | (2) |
|
4.6.2.2 ARIMA Model Fitting for Time Series Data |
|
|
273 | (1) |
|
|
273 | (3) |
|
|
276 | (6) |
|
4.6.4.1 Model and Parameter Estimation |
|
|
276 | (2) |
|
4.6.4.2 PAR Model Fitting |
|
|
278 | (1) |
|
4.6.4.3 Further Discussions |
|
|
279 | (3) |
|
4.6.5 Parameter Estimation of RAR Model |
|
|
282 | (5) |
|
4.6.6 Parameter Estimation of RMA Model |
|
|
287 | (1) |
|
4.6.7 Parameter Estimation of RARMA Model |
|
|
288 | (2) |
|
4.7 Mathematical Modeling of CW Radar Measurement Noise |
|
|
290 | (6) |
|
|
296 | (3) |
Chapter 5 Discrete-Time Kalman Filter |
|
299 | (48) |
|
|
299 | (2) |
|
5.2 Random Vector and Estimation |
|
|
301 | (9) |
|
5.2.1 Random Vector and Its Process |
|
|
301 | (4) |
|
5.2.1.1 Mean Vector and Variance Matrix |
|
|
301 | (2) |
|
5.2.1.2 Conditional Mean Vector and Conditional Variance Matrix |
|
|
303 | (1) |
|
5.2.1.3 Vector Random Process |
|
|
304 | (1) |
|
5.2.2 Estimate of the State Vector |
|
|
305 | (5) |
|
5.2.2.1 Minimum Mean Square Error Estimate |
|
|
305 | (3) |
|
5.2.2.2 Linear Minimum Mean Square Error Estimate (LMMSEE) |
|
|
308 | (2) |
|
5.2.2.3 The Relation between MMSEE and LMMSEE |
|
|
310 | (1) |
|
5.3 Discrete Time Kalman Filter |
|
|
310 | (11) |
|
5.3.1 Orthogonal Projection |
|
|
310 | (4) |
|
5.3.2 The Formula of Kalman Filter |
|
|
314 | (3) |
|
|
317 | (4) |
|
5.4 Kalman Filter with Colored Noise |
|
|
321 | (4) |
|
5.4.1 Kalman Filter with Colored State Noise |
|
|
321 | (1) |
|
5.4.2 Kalman Filtering with Colored Measurement Noise |
|
|
322 | (2) |
|
5.4.3 Kalman Filtering with Both Colored State Noise and Measurement Noise |
|
|
324 | (1) |
|
5.5 Divergence of Kalman Filter |
|
|
325 | (7) |
|
5.6 Kalman Filter with Noises of Unknown Statistical Characteristics |
|
|
332 | (13) |
|
5.6.1 Selection of Correlation Matrix Qk of the Dynamic Noise |
|
|
333 | (1) |
|
5.6.2 Extracting Statistical Features of Measurement Noises |
|
|
333 | (12) |
|
|
345 | (2) |
Chapter 6 Processing Data From Radar Measurements |
|
347 | (102) |
|
|
347 | (14) |
|
|
347 | (1) |
|
6.1.2 Tracking Measurements and Trajectory Determination Principle |
|
|
348 | (5) |
|
6.1.2.1 Optical Measurements |
|
|
348 | (2) |
|
6.1.2.2 Radar Measurements |
|
|
350 | (3) |
|
6.1.3 Precision Appraisal and Calibration of Measurement Equipments |
|
|
353 | (3) |
|
6.1.3.1 Precision Appraisal |
|
|
353 | (1) |
|
6.1.3.2 Precision Calibration |
|
|
354 | (2) |
|
6.1.4 Systematic Error Model of CW Radar |
|
|
356 | (1) |
|
6.1.5 Mathematical Processing for Radar Measurement Data |
|
|
357 | (4) |
|
6.2 Parametric Representation of the Trajectory |
|
|
361 | (9) |
|
6.2.1 Equation Representation of Trajectory |
|
|
361 | (2) |
|
6.2.2 Polynomial Representation of Trajectory |
|
|
363 | (2) |
|
|
365 | (1) |
|
6.2.4 Spline Representation of Trajectory |
|
|
366 | (4) |
|
6.3 Trajectory Calculation |
|
|
370 | (13) |
|
6.3.1 Mathematical Method for MISTRAM System Trajectory Determination |
|
|
371 | (5) |
|
6.3.1.1 Problem Introduction |
|
|
371 | (1) |
|
6.3.1.2 Mathematical Model for the MISTRAM System Measurement Data |
|
|
372 | (1) |
|
6.3.1.3 Mathematical Method for Trajectory Determination |
|
|
372 | (3) |
|
6.3.1.4 Error Propagation Relationship |
|
|
375 | (1) |
|
6.3.2 Nonlinear Regression Analysis Method for Trajectory Determination |
|
|
376 | (7) |
|
|
376 | (1) |
|
6.3.2.2 Mathematical Model Establishment |
|
|
377 | (2) |
|
6.3.2.3 Algorithm and Error Analysis |
|
|
379 | (3) |
|
6.3.3.4 Simulation Calculation Results |
|
|
382 | (1) |
|
6.4 Composite Model of Systematic Error and Trajectory Parameters |
|
|
383 | (4) |
|
6.4.1 Measurement Data Models |
|
|
383 | (1) |
|
6.4.2 Matched Systematic Error and Unmatched Systematic Error |
|
|
384 | (3) |
|
|
387 | (1) |
|
6.5 Time Alignment of CW Radar Multistation Tracking Data |
|
|
387 | (14) |
|
|
387 | (1) |
|
6.5.2 Velocity Measurement Mechanism of CW Radars |
|
|
388 | (3) |
|
6.5.3 Mathematical Model of the Multistation Measurement Data |
|
|
391 | (2) |
|
6.5.4 Solving Method and Error Analysis |
|
|
393 | (5) |
|
6.5.5 Time Alignment between the Distance Sum and Its Change Rate |
|
|
398 | (3) |
|
6.6 Estimation for Constant Systematic Error of CW Radars |
|
|
401 | (15) |
|
6.6.1 Mathematical Model of Measurement Data |
|
|
401 | (2) |
|
6.6.2 EMBET Method Analysis |
|
|
403 | (2) |
|
6.6.3 Nonlinear Modeling Method |
|
|
405 | (7) |
|
6.6.4 Algorithm and Numerical Examples |
|
|
412 | (3) |
|
|
415 | (1) |
|
6.7 Systematic Error Estimation for the Free Flight Phase |
|
|
416 | (10) |
|
6.7.1 Trajectory Equations in the Free Flight Phase |
|
|
417 | (3) |
|
6.7.2 Nonlinear Model of the Measurement Data |
|
|
420 | (3) |
|
6.7.3 Parameter Estimation Method |
|
|
423 | (3) |
|
6.7.4 Numerical Example and Analysis |
|
|
426 | (1) |
|
6.8 Estimation of Slow Drift Error in Range Rate Measurement |
|
|
426 | (12) |
|
6.8.1 Mathematical Model of Measurement Data |
|
|
426 | (3) |
|
6.8.2 Selection of the Spline Nodes |
|
|
429 | (7) |
|
6.8.3 Estimation of the Slow Drift Errors |
|
|
436 | (2) |
|
6.9 Summary of Radar Measurement Data Processing |
|
|
438 | (9) |
|
6.9.1 Data Processing Procedures |
|
|
438 | (6) |
|
6.9.1.1 Analysis of Abnormal Data |
|
|
439 | (1) |
|
6.9.1.2 Analysis of the Measurement Principle and the Measurement Data |
|
|
440 | (1) |
|
6.9.1.3 Measurement Data Modeling. |
|
|
441 | (1) |
|
6.9.1.4 Estimation of Statistical Features of Random Errors |
|
|
442 | (1) |
|
6.9.1.5 Estimation of True Signal and Systematic Error |
|
|
443 | (1) |
|
6.9.1.6 Engineering Analysis for Data Processing Results |
|
|
443 | (1) |
|
|
444 | (3) |
|
|
447 | (2) |
Chapter 7 Precise Orbit Determination Of Leo Satellites Based On Dual-Frequency Gps |
|
449 | (48) |
|
|
449 | (2) |
|
7.2 Spaceborne Dual-Frequency GPS Data Preprocessing |
|
|
451 | (16) |
|
7.2.1 Basic Observation Equations |
|
|
452 | (1) |
|
7.2.2 Pseudocode Outliers Removal |
|
|
452 | (9) |
|
7.2.2.1 Threshold Method of Signal-to-Noise Ratio |
|
|
453 | (1) |
|
7.2.2.2 Threshold Method of Ionospheric Delay |
|
|
453 | (1) |
|
7.2.2.3 Fitting Residual Method of Ionospheric Delay |
|
|
453 | (5) |
|
7.2.2.4 Method of Monitoring Receiver Autonomous Integrity |
|
|
458 | (3) |
|
7.2.3 Carrier Phase Outliers Removal and Cycle Slip Detection |
|
|
461 | (5) |
|
7.2.3.1 M-W Combination Epoch Difference Method |
|
|
462 | (1) |
|
7.2.3.2 Ionosphere-Free Ambiguity Epoch Difference Method |
|
|
463 | (1) |
|
7.2.3.3 Cumulative Sum Method |
|
|
464 | (2) |
|
7.2.4 Data Preprocessing Flow |
|
|
466 | (1) |
|
7.3 Orbit Determination by Zero-Difference Reduced Dynamics |
|
|
467 | (27) |
|
7.3.1 Observational Equations and Error Correction |
|
|
469 | (4) |
|
7.3.1.1 Relativity Adjustments |
|
|
470 | (1) |
|
7.3.1.2 Antenna Offset Corrections for GPS Satellites |
|
|
470 | (2) |
|
7.3.1.3 Antenna Offsets for LEO Satellites |
|
|
472 | (1) |
|
7.3.2 Parameter Estimation of Orbit Models |
|
|
473 | (4) |
|
7.3.3 Dynamic Orbit Models and Parameter Selections |
|
|
477 | (8) |
|
7.3.3.1 Earth Nonspherical Perturbation |
|
|
478 | (2) |
|
7.3.3.2 Third Body Gravitational Perturbations |
|
|
480 | (1) |
|
7.3.3.3 Tide Perturbations |
|
|
481 | (1) |
|
7.3.3.4 Atmospheric Drag Forces |
|
|
481 | (1) |
|
7.3.3.5 Solar Radiation Pressures |
|
|
482 | (1) |
|
7.3.3.6 Relativity Perturbations |
|
|
483 | (1) |
|
|
483 | (1) |
|
7.3.3.8 Dynamic Orbit Models and Parameter Selections |
|
|
484 | (1) |
|
7.3.4 Re-Editing Observational Data |
|
|
485 | (1) |
|
7.3.4.1 Re-Editing Pseudocode Data |
|
|
485 | (1) |
|
7.3.4.2 Re-Editing Phase Data |
|
|
485 | (1) |
|
7.3.5 The Flow of Zero-Difference Reduced Dynamic Orbit Determination |
|
|
486 | (1) |
|
7.3.6 Analysis of Results from Orbit Determination |
|
|
487 | (7) |
|
|
494 | (3) |
Appendix 1 Matrix Formulas In Common Use |
|
497 | (6) |
|
|
497 | (1) |
|
A1.2 Inverse of a Block Matrix |
|
|
498 | (2) |
|
A1.3 Positive Definite Character of a Matrix |
|
|
500 | (1) |
|
|
501 | (1) |
|
A1.5 Derivative of a Quadratic Form |
|
|
501 | (2) |
Appendix 2 Distributions In Common Use |
|
503 | (14) |
|
|
503 | (2) |
|
A2.2 Noncentral x2-Distribution |
|
|
505 | (1) |
|
|
506 | (2) |
|
|
508 | (9) |
Index |
|
517 | |