|
1 Mechanical Behaviors of Natural Fiber-Reinforced Polymer Hybrid Composites |
|
|
1 | (26) |
|
|
|
|
1 | (2) |
|
1.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites |
|
|
3 | (4) |
|
1.2.1 Natural Fiber-Reinforced Polymer Composites or Biocomposites |
|
|
3 | (1) |
|
|
4 | (3) |
|
1.3 Hybrid Natural Fiber-Reinforced Polymeric Biocomposites |
|
|
7 | (3) |
|
1.4 Mechanical Behaviors of Natural Fiber-Reinforced Polymer-Based Hybrid Composites |
|
|
10 | (10) |
|
1.4.1 Hybrid Natural FRP Composites |
|
|
11 | (1) |
|
1.4.1.1 Bagasse/Jute FRP Hybrid Composites |
|
|
11 | (1) |
|
1.4.1.2 Bamboo/MFC FRP Hybrid Composites |
|
|
12 | (1) |
|
1.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites |
|
|
12 | (2) |
|
1.4.1.4 Coconut/Cork FRP Hybrid Composites |
|
|
14 | (1) |
|
1.4.1.5 Coir/Silk FRP Hybrid Composites |
|
|
15 | (1) |
|
1.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites |
|
|
16 | (1) |
|
1.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites |
|
|
16 | (2) |
|
1.4.1.8 Jute/OPEFB FRP Hybrid Composites |
|
|
18 | (1) |
|
1.4.1.9 Kenaf/PALF FRP Hybrid Composites |
|
|
18 | (1) |
|
1.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites |
|
|
19 | (1) |
|
1.5 Other Related Properties that Are Dependent on Mechanical Properties |
|
|
20 | (1) |
|
1.5.1 Tribological Behavior |
|
|
20 | (1) |
|
|
21 | (1) |
|
1.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites |
|
|
21 | (1) |
|
|
22 | (5) |
|
|
23 | (4) |
|
2 Mechanical Behavior of Additive Manufactured Porous Biocomposites |
|
|
27 | (22) |
|
|
|
|
27 | (1) |
|
|
27 | (2) |
|
|
29 | (1) |
|
2.4 Biomaterials for Scaffolds |
|
|
30 | (3) |
|
2.4.1 Required Properties of Biomaterials |
|
|
30 | (1) |
|
2.4.2 Types of Biomaterials |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
2.5 Additive Manufacturing of Porous Structures |
|
|
33 | (3) |
|
2.5.1 Generic Process of AM |
|
|
33 | (1) |
|
2.5.2 Powder Bed Fusion Process |
|
|
34 | (1) |
|
2.5.3 Fused Deposition Modeling Process |
|
|
35 | (1) |
|
2.5.4 Additive Manufacturing of Porous Biocomposites |
|
|
35 | (1) |
|
2.6 Design of Porous Scaffold |
|
|
36 | (2) |
|
|
36 | (1) |
|
|
37 | (1) |
|
2.6.3 Bioceramics as Reinforcement Material |
|
|
37 | (1) |
|
2.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites |
|
|
38 | (3) |
|
|
41 | (8) |
|
|
41 | (8) |
|
3 Mechanical and Dynamic Mechanical Analysis of Bio-based Composites |
|
|
49 | (28) |
|
|
|
|
|
|
|
|
|
|
49 | (1) |
|
3.2 Mechanical Properties of Macro-scale Fiber |
|
|
50 | (1) |
|
3.3 Mechanical Properties of Nano-scale Fiber |
|
|
50 | (5) |
|
3.3.1 Factors Affecting Mechanical Properties of Bionanocomposites |
|
|
50 | (1) |
|
3.3.1.1 Fabrication Method |
|
|
51 | (2) |
|
3.3.1.2 Nanocellulose Loading |
|
|
53 | (1) |
|
3.3.1.3 Nanocellulose Dispersion and Distribution |
|
|
53 | (1) |
|
3.3.1.4 Nanocellulose Orientation |
|
|
53 | (1) |
|
3.3.2 The Static Mechanical Properties of Bionanocomposites |
|
|
54 | (1) |
|
3.4 Dynamic Mechanical Analysis (DMA) of Biocomposites |
|
|
55 | (11) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (2) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
3.4.1.6 Pineapple Leaf Fiber (PALF) |
|
|
60 | (1) |
|
3.4.1.7 Oil Palm Fiber (OPF) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
3.4.1.13 Waste Silk Fiber |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
3.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute |
|
|
66 | (1) |
|
3.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose |
|
|
66 | (1) |
|
3.5 Dynamic Mechanical Properties of Bionanocomposites |
|
|
66 | (2) |
|
3.5.1 The Dynamic Mechanical Properties of Bionano composites |
|
|
67 | (1) |
|
|
68 | (9) |
|
|
68 | (9) |
|
4 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers |
|
|
77 | (5) |
|
|
|
|
|
|
77 | (5) |
|
4.2 Major Factors Influencing Quality of Biocomposites |
|
|
82 | (1) |
|
42 lT Selection of Natural Fibers |
|
|
82 | (27) |
|
4.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites |
|
|
85 | (3) |
|
4.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites |
|
|
88 | (3) |
|
4.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification |
|
|
91 | (4) |
|
4.2.5 Type of Polymer Matrix |
|
|
95 | (1) |
|
4.2.6 Processing Conditions in the Manufacture of Biocomposite |
|
|
96 | (2) |
|
4.2.7 Presence of Voids and Porosity |
|
|
98 | (1) |
|
4.2.8 Nanocellulose-Reinforced Biocomposites |
|
|
98 | (3) |
|
4.2.8.1 Preparation and Properties of Cellulose Nanofibers |
|
|
101 | (1) |
|
4.2.8.2 Industrial Applications of Cellulose Nanofibers |
|
|
101 | (2) |
|
|
103 | (6) |
|
|
103 | (6) |
|
5 Machinability Analysis on Biowaste Bagasse-Fiber-Reinforced Vinyl Ester Composite Using S/N Ratio and ANOVA Method |
|
|
109 | (12) |
|
|
|
|
|
109 | (2) |
|
5.2 Experimental Methodology |
|
|
111 | (3) |
|
|
111 | (1) |
|
5.2.2 Specimen Preparation |
|
|
111 | (1) |
|
5.2.3 Machining of the Composite Specimen |
|
|
111 | (1) |
|
5.2.4 Selection of Orthogonal Array |
|
|
111 | (2) |
|
5.2.5 Development of Multivariable Nonlinear Regression Model |
|
|
113 | (1) |
|
5.3 Results and Discussion |
|
|
114 | (4) |
|
5.3.1 Influence of Machining Parameters on Thrust Force and Torque |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
5.3.4 Correlation of Machining Parameters with Responses |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
118 | (3) |
|
|
118 | (3) |
|
6 Mechanical and Dynamic Properties of Kenaf-Fiber-Reinforced Composites |
|
|
121 | (14) |
|
|
|
|
|
121 | (1) |
|
6.2 Mechanical Properties of Kenaf-Fiber-Reinforced Polymer Composite |
|
|
122 | (2) |
|
6.3 Dynamic Mechanical Analysis |
|
|
124 | (1) |
|
6.4 Storage Modulus (E) of Kenaf Fiber-Polymer Composite |
|
|
125 | (1) |
|
6.5 Loss Modulus (E) of Kenaf Fiber-Polymer Composite |
|
|
125 | (1) |
|
6.6 Damping Factor (Tan S) |
|
|
126 | (1) |
|
6.7 Glass Transition Temperatures (Tg) |
|
|
127 | (3) |
|
|
130 | (5) |
|
|
131 | (4) |
|
7 Investigation on Mechanical Properties of Surface-Treated Natural Fibers-Reinforced Polymer Composites |
|
|
135 | (28) |
|
|
|
|
|
|
135 | (1) |
|
7.2 Mechanical Properties of Natural Fibers |
|
|
135 | (1) |
|
7.3 Drawbacks of Natural Fibers |
|
|
136 | (1) |
|
7.4 Surface Modification of Natural Fibers |
|
|
137 | (10) |
|
|
137 | (1) |
|
|
137 | (3) |
|
|
140 | (3) |
|
7.4.4 Acetylation Treatment |
|
|
143 | (2) |
|
7.4.5 Benzylation Treatment |
|
|
145 | (1) |
|
|
146 | (1) |
|
7.5 Maleated Coupling Agents |
|
|
147 | (9) |
|
|
148 | (2) |
|
7.5.2 Permanganate Treatment |
|
|
150 | (1) |
|
7.5.3 Stearic Acid Treatment |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (7) |
|
|
156 | (7) |
|
8 Mechanical and Tribological Characteristics of Industrial Waste and Agro Waste Based Hybrid Composites |
|
|
163 | (12) |
|
|
|
|
|
Rajendran Deepak Joel Johnson |
|
|
|
163 | (1) |
|
8.2 Materials and Methods |
|
|
164 | (2) |
|
8.2.1 Scanning Electron Microscopy (SEM) |
|
|
166 | (1) |
|
8.3 Result and Discussion |
|
|
166 | (7) |
|
8.3.1 Effect of Chemical Treatment on Fiber |
|
|
166 | (1) |
|
8.3.2 Mechanical Behavior |
|
|
167 | (2) |
|
|
169 | (1) |
|
8.3.3.1 Effect of Fiber Treatment on Erosion Rate |
|
|
169 | (1) |
|
8.3.3.2 Effect of Red Mud Addition on Erosion Rate |
|
|
170 | (1) |
|
8.3.3.3 Effect of Impact Angle on Erosion Rate |
|
|
170 | (3) |
|
|
173 | (2) |
|
|
173 | (2) |
|
9 Dynamic Properties of Kenaf-Fiber-Reinforced Composites |
|
|
175 | (16) |
|
|
|
|
|
75 | (101) |
|
9.2 Manufacturing Techniques for Kenaf-Fiber-Reinforced Composites |
|
|
176 | (1) |
|
|
177 | (2) |
|
9.3.1 Dynamic Mechanical Analysis (DMA) |
|
|
178 | (1) |
|
9.3.2 Thermogravimetric Analysis (TGA) |
|
|
178 | (1) |
|
9.3.3 Vibration-Damping Testing |
|
|
178 | (1) |
|
9.3.4 Acoustic Properties |
|
|
179 | (1) |
|
9.4 Overview of the Dynamics Properties of Kenaf-Fiber-Reinforced Composite |
|
|
179 | (8) |
|
9.4.1 Dynamic Mechanical Properties (DMA) |
|
|
180 | (4) |
|
9.4.2 TGA Analysis of Composites |
|
|
184 | (2) |
|
9.4.3 Acoustic Properties |
|
|
186 | (1) |
|
|
187 | (4) |
|
|
187 | (4) |
|
10 Effect of Micro-Dry-Leaves Filler and Al-SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites |
|
|
191 | (16) |
|
|
Govindrajulu Hemath Kumar |
|
|
Varadhappan Arul Mozhi Selvan |
|
|
|
|
|
191 | (2) |
|
10.2 Materials and Methods |
|
|
193 | (2) |
|
|
193 | (1) |
|
10.2.2 Production of Al-SiC Nanoparticles |
|
|
193 | (1) |
|
10.2.3 Fabrication of Epoxy Composites |
|
|
194 | (1) |
|
10.2.4 Epoxy Composite Characterization |
|
|
194 | (1) |
|
10.2.4.1 Porosity, Density, and Volume Fraction |
|
|
194 | (1) |
|
10.2.4.2 Tensile Properties |
|
|
194 | (1) |
|
10.2.4.3 Flexural Properties |
|
|
194 | (1) |
|
|
195 | (1) |
|
10.2.4.5 Dynamic Mechanical Analysis (DMA) |
|
|
195 | (1) |
|
10.2.4.6 Morphological Properties |
|
|
195 | (1) |
|
10.3 Results and Discussion |
|
|
195 | (6) |
|
10.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites |
|
|
195 | (1) |
|
10.3.2 Tensile Characteristics |
|
|
196 | (1) |
|
10.3.3 Flexural Characteristics |
|
|
197 | (1) |
|
10.3.4 Impact Characteristics |
|
|
198 | (1) |
|
10.3.5 Dynamic Mechanical Analysis |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
10.3.6 Morphological Characteristics |
|
|
201 | (1) |
|
|
201 | (6) |
|
|
202 | (5) |
|
11 Effect of Fillers on Natural Fiber-Polymer Composite: An Overview of Physical and Mechanical Properties |
|
|
207 | (28) |
|
|
|
Balasundaram Muthu Chozha Rajan |
|
|
|
207 | (1) |
|
11.2 Influence of Cellulose Micro-filler on the Flax, Pineapple Fiber-Reinforced Epoxy Matrix Composites |
|
|
208 | (1) |
|
11.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites |
|
|
208 | (1) |
|
11.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites |
|
|
209 | (1) |
|
11.5 Influence of Fly Ash on Wood Fiber Geopolymer Composites |
|
|
210 | (1) |
|
11.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites |
|
|
211 | (1) |
|
11.7 Influence of Portunus sanguinolentus Shell Powder on the Jute Fiber-Epoxy Composite |
|
|
212 | (2) |
|
11.8 Influence of Nano-Si02 Filler on the Phaseolus vulgaris Fiber-Polyester Composite |
|
|
214 | (1) |
|
11.9 Influence of Aluminum Hydroxide (Al(OH)3) Filler on the Vulgaris Banana Fiber-Epoxy Composite |
|
|
215 | (1) |
|
11.10 Influence of Palm and Coconut Shell Filler on the Hemp-Kevlar Fiber-Epoxy Composite |
|
|
216 | (1) |
|
11.11 Influence of Coir Powder Filler on Polyester Composite |
|
|
217 | (1) |
|
11.12 Influence of CaC03 (Calcium Carbonate) Filler on the Luffa Fiber-Epoxy Composite |
|
|
217 | (1) |
|
11.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite |
|
|
218 | (2) |
|
11.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber-Natural Rubber Composite |
|
|
220 | (1) |
|
11.15 Influence of Groundnut Shell, Rice Husk, and Wood Powder Fillers on the Luffa cylindrica Fiber-Polyester Composite |
|
|
220 | (1) |
|
11.16 Influence of Rice Husk Fillers on the Bauhinia vahlii - Sisal Fiber-Epoxy Composite |
|
|
221 | (1) |
|
11.17 Influence of Areca Fine Fiber Fillers on the Calotropis gigantea Fiber Phenol Formaldehyde Composite |
|
|
221 | (2) |
|
11.18 Influence of Tamarind Seed Fillers on the Flax Fiber-Liquid Thermoplastic Composite |
|
|
223 | (1) |
|
11.19 Influence of Walnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites |
|
|
223 | (1) |
|
11.20 Influence of Waste Vegetable Peel Fillers on the Epoxy Composite |
|
|
224 | (1) |
|
11.21 Influence of Clusia multiflora Saw Dust Fillers on the Rubber Composite |
|
|
224 | (1) |
|
11.22 Influence of Wood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite |
|
|
225 | (1) |
|
11.23 Influence of Wood Dust Fillers (Rosewood and Padauk) on the Jute Fiber-Epoxy Composite |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
226 | (9) |
|
|
231 | (4) |
|
12 Temperature-Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrica Reinforced Biochar-Tailored Vinyl Ester Composite |
|
|
235 | (20) |
|
Rajendran Deepak Joel Johnson |
|
|
|
|
|
|
|
235 | (1) |
|
12.2 Materials and Method |
|
|
236 | (4) |
|
|
236 | (2) |
|
12.2.2 Biochar Characterization |
|
|
238 | (1) |
|
12.2.2.1 Particle Size Analyzer |
|
|
238 | (1) |
|
12.2.2.2 X-ray Diffraction |
|
|
238 | (1) |
|
12.2.2.3 FTIR Spectroscopy |
|
|
238 | (1) |
|
12.2.3 Composite Fabrication |
|
|
239 | (1) |
|
12.2.4 Dynamic Mechanical Analysis (DMA) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
12.2.8 Scanning Electron Microscopy |
|
|
240 | (1) |
|
12.3 Results and Discussion |
|
|
240 | (11) |
|
12.3.1 Biochar Characterization |
|
|
240 | (1) |
|
12.3.1.1 Particle Analyzer |
|
|
240 | (1) |
|
12.3.1.2 Fourier Transform (InfraRed) Spectroscopy |
|
|
240 | (2) |
|
12.3.1.3 X-ray Diffraction |
|
|
242 | (1) |
|
12.3.2 Dynamic Mechanical Analysis |
|
|
243 | (4) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
249 | (2) |
|
|
251 | (4) |
|
|
251 | (4) |
|
13 Development and Sustainability of Biochar Derived from Cashew Nutshell-Reinforced Polymer Matrix Composite |
|
|
255 | (10) |
|
|
|
|
|
|
|
255 | (2) |
|
13.2 Materials and Methods |
|
|
257 | (1) |
|
13.2.1 Biochar Preparation |
|
|
257 | (1) |
|
13.2.2 Composite Preparation |
|
|
257 | (1) |
|
13.2.3 Mechanical Testing |
|
|
258 | (1) |
|
13.3 Results and Discussion |
|
|
258 | (5) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
260 | (1) |
|
|
260 | (1) |
|
13.3.5 Failure Analysis of Cashew Nutshell Waste Extracted Biochar-Reinforced Polymer Composites |
|
|
261 | (1) |
|
13.3.5.1 Tensile Strength Failure Analysis |
|
|
261 | (1) |
|
13.3.5.2 Flexural Strength Failure Analysis |
|
|
262 | (1) |
|
13.3.5.3 Impact Strength Failure Analysis |
|
|
262 | (1) |
|
|
263 | (2) |
|
|
263 | (2) |
|
14 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber-Reinforced Epoxy Composites |
|
|
265 | (10) |
|
|
|
Chennuri Phani Durga Prasad |
|
|
|
|
|
265 | (1) |
|
|
265 | (1) |
|
14.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite |
|
|
266 | (1) |
|
14.2 Materials and Methods |
|
|
266 | (1) |
|
|
266 | (1) |
|
14.2.2 Fabrication Method |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
14.2.3.3 Moisture Diffusion |
|
|
267 | (1) |
|
14.3 Results and Discussion |
|
|
267 | (5) |
|
14.3.1 Tensile Properties |
|
|
267 | (2) |
|
14.3.2 Flexural Properties |
|
|
269 | (2) |
|
|
271 | (1) |
|
|
272 | (3) |
|
|
272 | (3) |
|
15 Mechanical and Dynamic Properties of Ramie Fiber-Reinforced Composites |
|
|
275 | (18) |
|
|
Lakshminarasimhan Rajeshkumar |
|
|
|
|
275 | (2) |
|
15.2 Mechanical Strength of Ramie Fiber Composites |
|
|
277 | (4) |
|
15.3 Dynamic Properties of Ramie Fiber Composites |
|
|
281 | (7) |
|
15.3.1 Temperature Influence |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (4) |
|
|
288 | (5) |
|
|
289 | (4) |
|
16 Fracture Toughness of the Natural Fiber-Reinforced Composites: A Review |
|
|
293 | (12) |
|
|
|
|
Senthitkumar Krishnasamy Senthil Muthu Kumar Thiagamani |
|
|
|
|
293 | (5) |
|
16.1.1 Fracture Toughness Tests |
|
|
294 | (2) |
|
|
296 | (1) |
|
16.1.2.1 Double Cantilever Beam Method (DCB) |
|
|
296 | (1) |
|
16.1.2.2 Compact Tensile Method (CT) |
|
|
296 | (1) |
|
16.1.2.3 Single-Edge Notch Bend Test (SENB) |
|
|
296 | (1) |
|
|
297 | (1) |
|
16.1.3.1 End-Notched Flexure Test (ENF) |
|
|
297 | (1) |
|
|
297 | (1) |
|
16.1.4.1 Split Cantilever Beam Method (SCB) |
|
|
297 | (1) |
|
16.1.4.2 Edge Crack Torsion Test (ECT) |
|
|
298 | (1) |
|
16.1.4.3 Mixed Mode Bend Test (MMB) |
|
|
298 | (1) |
|
16.2 Factors Affecting the Fracture Energy of the Biocomposites |
|
|
298 | (4) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
299 | (2) |
|
|
301 | (1) |
|
|
302 | (3) |
|
|
302 | (1) |
|
|
302 | (3) |
|
17 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites |
|
|
305 | (5) |
|
|
|
|
Rajendran Deepak Joel Johnson |
|
|
|
|
|
305 | (2) |
|
17.2 Materials and Methods |
|
|
307 | (1) |
|
|
307 | (1) |
|
17.2.2 Fabrication of Composites |
|
|
307 | (1) |
|
17.2.3 Dynamic Mechanical Analysis |
|
|
307 | (1) |
|
17.3 Result and Discussion |
|
|
308 | (1) |
|
17.3.1 Damping Factor (Tan <5) Response of Basalt/Flax Fiber Composite |
|
|
308 | (1) |
|
17.3.2 Storage Modulus (E') Response of Basalt/Flax Fiber Composite |
|
|
308 | (1) |
|
17.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites |
|
|
309 | (1) |
|
|
309 | (1) |
Acknowledgments |
|
310 | (1) |
References |
|
310 | (3) |
Index |
|
313 | |