Muutke küpsiste eelistusi

Mechanical and Dynamic Properties of Biocomposites [Kõva köide]

  • Formaat: Hardback, 336 pages, kõrgus x laius x paksus: 244x170x21 mm, kaal: 794 g
  • Ilmumisaeg: 16-Jun-2021
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527346260
  • ISBN-13: 9783527346264
Teised raamatud teemal:
  • Formaat: Hardback, 336 pages, kõrgus x laius x paksus: 244x170x21 mm, kaal: 794 g
  • Ilmumisaeg: 16-Jun-2021
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527346260
  • ISBN-13: 9783527346264
Teised raamatud teemal:

A comprehensive review of the properties of biocomposites and their applications  

Mechanical and Dynamic Properties of Biocomposites offers a comprehensive overview of the mechanical and dynamic properties of biocomposites and natural fiber-reinforced polymer composites. This essential resource  helps with materials selection in the development of products in fields like automotive and aerospace engineering as well as the construction of structures in civil engineering.  

With contributions from a panel of experts in the field, the book reviews the mechanical and vibration damping properties of lingo-cellulosic fibers and their composites. The authors highlight the factors that contribute to the improvement in properties and present mathematical models used to predict such properties. In addition, the book is filled with illustrative case studies that clearly show the various applications of biocomposites. This important book:   

  • Presents viable alternatives to conventional composites 
  • Examines the environmentally friendly and favorable mechanical properties of biocomposites 
  • Reviews the potential applications of biocomposites in the fields of automotive, mechanical and civil engineering 
  • Brings together in one comprehensive resource information found scattered across the professional literature 

Written for materials scientists, polymer chemists, chemists in industry, civil engineers, construction engineers, and engineering scientists in industry, Mechanical and Dynamic Properties of BIocomposites offers a compreshensive review of the properties and applications of biocomposites.  

1 Mechanical Behaviors of Natural Fiber-Reinforced Polymer Hybrid Composites
1(26)
Adelani A. Oyeniran
Sikiru O. Ismail
1.1 Introduction
1(2)
1.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites
3(4)
1.2.1 Natural Fiber-Reinforced Polymer Composites or Biocomposites
3(1)
1.2.2 Polymer Matrices
4(3)
1.3 Hybrid Natural Fiber-Reinforced Polymeric Biocomposites
7(3)
1.4 Mechanical Behaviors of Natural Fiber-Reinforced Polymer-Based Hybrid Composites
10(10)
1.4.1 Hybrid Natural FRP Composites
11(1)
1.4.1.1 Bagasse/Jute FRP Hybrid Composites
11(1)
1.4.1.2 Bamboo/MFC FRP Hybrid Composites
12(1)
1.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites
12(2)
1.4.1.4 Coconut/Cork FRP Hybrid Composites
14(1)
1.4.1.5 Coir/Silk FRP Hybrid Composites
15(1)
1.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites
16(1)
1.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites
16(2)
1.4.1.8 Jute/OPEFB FRP Hybrid Composites
18(1)
1.4.1.9 Kenaf/PALF FRP Hybrid Composites
18(1)
1.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites
19(1)
1.5 Other Related Properties that Are Dependent on Mechanical Properties
20(1)
1.5.1 Tribological Behavior
20(1)
1.5.2 Thermal Behavior
21(1)
1.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites
21(1)
1.7 Conclusions
22(5)
References
23(4)
2 Mechanical Behavior of Additive Manufactured Porous Biocomposites
27(22)
Ramu Murugan
Mohanraj Thangamuthu
2.1 Introduction
27(1)
2.2 Human Bone
27(2)
2.3 Porous Scaffold
29(1)
2.4 Biomaterials for Scaffolds
30(3)
2.4.1 Required Properties of Biomaterials
30(1)
2.4.2 Types of Biomaterials
31(1)
2.4.2.1 Metals
31(1)
2.4.2.2 Polymers
31(1)
2.4.2.3 Ceramics
32(1)
2.4.2.4 Composites
32(1)
2.5 Additive Manufacturing of Porous Structures
33(3)
2.5.1 Generic Process of AM
33(1)
2.5.2 Powder Bed Fusion Process
34(1)
2.5.3 Fused Deposition Modeling Process
35(1)
2.5.4 Additive Manufacturing of Porous Biocomposites
35(1)
2.6 Design of Porous Scaffold
36(2)
2.6.1 Pore Size
36(1)
2.6.2 Pore Geometry
37(1)
2.6.3 Bioceramics as Reinforcement Material
37(1)
2.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites
38(3)
2.8 Conclusion
41(8)
References
41(8)
3 Mechanical and Dynamic Mechanical Analysis of Bio-based Composites
49(28)
R.A. Ilyas
S.M. Sapuan
M.R.M. Asyraf
M.S.N. Atikah
R. Ibrahim
Mohd N.F. Norrrahim
Tengku A.T. Yasim-Anuar
Liana N. Megashah
3.1 Introduction
49(1)
3.2 Mechanical Properties of Macro-scale Fiber
50(1)
3.3 Mechanical Properties of Nano-scale Fiber
50(5)
3.3.1 Factors Affecting Mechanical Properties of Bionanocomposites
50(1)
3.3.1.1 Fabrication Method
51(2)
3.3.1.2 Nanocellulose Loading
53(1)
3.3.1.3 Nanocellulose Dispersion and Distribution
53(1)
3.3.1.4 Nanocellulose Orientation
53(1)
3.3.2 The Static Mechanical Properties of Bionanocomposites
54(1)
3.4 Dynamic Mechanical Analysis (DMA) of Biocomposites
55(11)
3.4.1 Single Fiber
57(1)
3.4.1.1 Sugar Palm
57(1)
3.4.1.2 Bamboo
57(2)
3.4.1.3 Kenaf
59(1)
3.4.1.4 Alfa
59(1)
3.4.1.5 Carnauba
59(1)
3.4.1.6 Pineapple Leaf Fiber (PALF)
60(1)
3.4.1.7 Oil Palm Fiber (OPF)
60(1)
3.4.1.8 Red Algae
60(1)
3.4.1.9 Banana
61(1)
3.4.1.10 Flax
62(1)
3.4.1.11 Jute
62(1)
3.4.1.12 Hemp
63(1)
3.4.1.13 Waste Silk Fiber
63(1)
3.4.1.14 Henequen
64(1)
3.4.2 Hybrid Fiber
64(1)
3.4.2.1 Sisal/Oil Palm
64(1)
3.4.2.2 Coir/PALF
65(1)
3.4.2.3 Kenaf/PALF
65(1)
3.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute
66(1)
3.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose
66(1)
3.5 Dynamic Mechanical Properties of Bionanocomposites
66(2)
3.5.1 The Dynamic Mechanical Properties of Bionano composites
67(1)
3.6 Conclusion
68(9)
References
68(9)
4 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers
77(5)
Nadir Ayrilmis
Sarawut Rimdusit
Rajini Nagarajan
M.P. Indira Devi
4.1 Introduction
77(5)
4.2 Major Factors Influencing Quality of Biocomposites
82(1)
42 lT Selection of Natural Fibers
82(27)
4.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites
85(3)
4.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites
88(3)
4.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification
91(4)
4.2.5 Type of Polymer Matrix
95(1)
4.2.6 Processing Conditions in the Manufacture of Biocomposite
96(2)
4.2.7 Presence of Voids and Porosity
98(1)
4.2.8 Nanocellulose-Reinforced Biocomposites
98(3)
4.2.8.1 Preparation and Properties of Cellulose Nanofibers
101(1)
4.2.8.2 Industrial Applications of Cellulose Nanofibers
101(2)
4.3 Conclusions
103(6)
References
103(6)
5 Machinability Analysis on Biowaste Bagasse-Fiber-Reinforced Vinyl Ester Composite Using S/N Ratio and ANOVA Method
109(12)
Batasubramaniam Stalin
Ayyanar Athijayamani
Rajini Nagarajan
5.1 Introduction
109(2)
5.2 Experimental Methodology
111(3)
5.2.1 Materials
111(1)
5.2.2 Specimen Preparation
111(1)
5.2.3 Machining of the Composite Specimen
111(1)
5.2.4 Selection of Orthogonal Array
111(2)
5.2.5 Development of Multivariable Nonlinear Regression Model
113(1)
5.3 Results and Discussion
114(4)
5.3.1 Influence of Machining Parameters on Thrust Force and Torque
114(1)
5.3.2 S/N Ratio
115(1)
5.3.3 ANOVA
115(1)
5.3.4 Correlation of Machining Parameters with Responses
116(1)
5.3.5 Confirmation Test
117(1)
5.4 Conclusions
118(3)
References
118(3)
6 Mechanical and Dynamic Properties of Kenaf-Fiber-Reinforced Composites
121(14)
Brijesh Gangil
Lalit Ranakoti
Pawan K. Rakesh
6.1 Introduction
121(1)
6.2 Mechanical Properties of Kenaf-Fiber-Reinforced Polymer Composite
122(2)
6.3 Dynamic Mechanical Analysis
124(1)
6.4 Storage Modulus (E) of Kenaf Fiber-Polymer Composite
125(1)
6.5 Loss Modulus (E) of Kenaf Fiber-Polymer Composite
125(1)
6.6 Damping Factor (Tan S)
126(1)
6.7 Glass Transition Temperatures (Tg)
127(3)
6.8 Conclusion
130(5)
References
131(4)
7 Investigation on Mechanical Properties of Surface-Treated Natural Fibers-Reinforced Polymer Composites
135(28)
Sabarish Radoor
Jasila Karayil
Aswathy Jayakumar
Suchart Siengchin
7.1 Introduction
135(1)
7.2 Mechanical Properties of Natural Fibers
135(1)
7.3 Drawbacks of Natural Fibers
136(1)
7.4 Surface Modification of Natural Fibers
137(10)
7.4.1 Chemical Treatment
137(1)
7.4.2 Alkaline Treatment
137(3)
7.4.3 Silane Treatment
140(3)
7.4.4 Acetylation Treatment
143(2)
7.4.5 Benzylation Treatment
145(1)
7.4.6 Peroxide Treatment
146(1)
7.5 Maleated Coupling Agents
147(9)
7.5.1 Isocyanate
148(2)
7.5.2 Permanganate Treatment
150(1)
7.5.3 Stearic Acid Treatment
151(1)
7.5.4 Physical Treatment
152(1)
7.5.5 Plasma Treatment
152(2)
7.5.6 Corona Treatment
154(1)
7.5.7 Ozone Treatment
155(1)
7.6 Summary
156(7)
References
156(7)
8 Mechanical and Tribological Characteristics of Industrial Waste and Agro Waste Based Hybrid Composites
163(12)
Vigneswaran Shanmugam
Uthayakumar Marimuthu
Veerasimman Arumugaprabu
Sundarakannan Rajendran
Rajendran Deepak Joel Johnson
8.1 Introduction
163(1)
8.2 Materials and Methods
164(2)
8.2.1 Scanning Electron Microscopy (SEM)
166(1)
8.3 Result and Discussion
166(7)
8.3.1 Effect of Chemical Treatment on Fiber
166(1)
8.3.2 Mechanical Behavior
167(2)
8.3.3 Erosion Behavior
169(1)
8.3.3.1 Effect of Fiber Treatment on Erosion Rate
169(1)
8.3.3.2 Effect of Red Mud Addition on Erosion Rate
170(1)
8.3.3.3 Effect of Impact Angle on Erosion Rate
170(3)
8.4 Conclusion
173(2)
References
173(2)
9 Dynamic Properties of Kenaf-Fiber-Reinforced Composites
175(16)
Rashed Al Mizan
Nur N. Akter
Mohammad I. Iqbal
9.1 Introduction J
75(101)
9.2 Manufacturing Techniques for Kenaf-Fiber-Reinforced Composites
176(1)
9.3 Characterization
177(2)
9.3.1 Dynamic Mechanical Analysis (DMA)
178(1)
9.3.2 Thermogravimetric Analysis (TGA)
178(1)
9.3.3 Vibration-Damping Testing
178(1)
9.3.4 Acoustic Properties
179(1)
9.4 Overview of the Dynamics Properties of Kenaf-Fiber-Reinforced Composite
179(8)
9.4.1 Dynamic Mechanical Properties (DMA)
180(4)
9.4.2 TGA Analysis of Composites
184(2)
9.4.3 Acoustic Properties
186(1)
9.5 Conclusion
187(4)
References
187(4)
10 Effect of Micro-Dry-Leaves Filler and Al-SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites
191(16)
Mohit Hemath
Govindrajulu Hemath Kumar
Varadhappan Arul Mozhi Selvan
Mavinkere R. Sanjay
Suchart Siengchin
10.1 Introduction
191(2)
10.2 Materials and Methods
193(2)
10.2.1 Materials
193(1)
10.2.2 Production of Al-SiC Nanoparticles
193(1)
10.2.3 Fabrication of Epoxy Composites
194(1)
10.2.4 Epoxy Composite Characterization
194(1)
10.2.4.1 Porosity, Density, and Volume Fraction
194(1)
10.2.4.2 Tensile Properties
194(1)
10.2.4.3 Flexural Properties
194(1)
10.2.4.4 Impact Strength
195(1)
10.2.4.5 Dynamic Mechanical Analysis (DMA)
195(1)
10.2.4.6 Morphological Properties
195(1)
10.3 Results and Discussion
195(6)
10.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites
195(1)
10.3.2 Tensile Characteristics
196(1)
10.3.3 Flexural Characteristics
197(1)
10.3.4 Impact Characteristics
198(1)
10.3.5 Dynamic Mechanical Analysis
199(1)
10.3.5.1 Storage Modulus
199(1)
10.3.5.2 Loss Modulus
200(1)
10.3.5.3 Damping Factor
201(1)
10.3.6 Morphological Characteristics
201(1)
10.4 Conclusion
201(6)
References
202(5)
11 Effect of Fillers on Natural Fiber-Polymer Composite: An Overview of Physical and Mechanical Properties
207(28)
Annamalai Saravanakumaar
Arunachalam Senthilkumar
Balasundaram Muthu Chozha Rajan
11.1 Introduction
207(1)
11.2 Influence of Cellulose Micro-filler on the Flax, Pineapple Fiber-Reinforced Epoxy Matrix Composites
208(1)
11.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites
208(1)
11.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites
209(1)
11.5 Influence of Fly Ash on Wood Fiber Geopolymer Composites
210(1)
11.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites
211(1)
11.7 Influence of Portunus sanguinolentus Shell Powder on the Jute Fiber-Epoxy Composite
212(2)
11.8 Influence of Nano-Si02 Filler on the Phaseolus vulgaris Fiber-Polyester Composite
214(1)
11.9 Influence of Aluminum Hydroxide (Al(OH)3) Filler on the Vulgaris Banana Fiber-Epoxy Composite
215(1)
11.10 Influence of Palm and Coconut Shell Filler on the Hemp-Kevlar Fiber-Epoxy Composite
216(1)
11.11 Influence of Coir Powder Filler on Polyester Composite
217(1)
11.12 Influence of CaC03 (Calcium Carbonate) Filler on the Luffa Fiber-Epoxy Composite
217(1)
11.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite
218(2)
11.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber-Natural Rubber Composite
220(1)
11.15 Influence of Groundnut Shell, Rice Husk, and Wood Powder Fillers on the Luffa cylindrica Fiber-Polyester Composite
220(1)
11.16 Influence of Rice Husk Fillers on the Bauhinia vahlii - Sisal Fiber-Epoxy Composite
221(1)
11.17 Influence of Areca Fine Fiber Fillers on the Calotropis gigantea Fiber Phenol Formaldehyde Composite
221(2)
11.18 Influence of Tamarind Seed Fillers on the Flax Fiber-Liquid Thermoplastic Composite
223(1)
11.19 Influence of Walnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites
223(1)
11.20 Influence of Waste Vegetable Peel Fillers on the Epoxy Composite
224(1)
11.21 Influence of Clusia multiflora Saw Dust Fillers on the Rubber Composite
224(1)
11.22 Influence of Wood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite
225(1)
11.23 Influence of Wood Dust Fillers (Rosewood and Padauk) on the Jute Fiber-Epoxy Composite
225(1)
11.24 Summary
226(1)
11.25 Conclusions
226(9)
References
231(4)
12 Temperature-Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrica Reinforced Biochar-Tailored Vinyl Ester Composite
235(20)
Rajendran Deepak Joel Johnson
Veerasimman Arumugaprabu
Rajini Nagarajan
Fernando G. Souza
Vigneswaran Shanmugam
12.1 Introduction
235(1)
12.2 Materials and Method
236(4)
12.2.1 Materials
236(2)
12.2.2 Biochar Characterization
238(1)
12.2.2.1 Particle Size Analyzer
238(1)
12.2.2.2 X-ray Diffraction
238(1)
12.2.2.3 FTIR Spectroscopy
238(1)
12.2.3 Composite Fabrication
239(1)
12.2.4 Dynamic Mechanical Analysis (DMA)
239(1)
12.2.5 Tensile Testing
239(1)
12.2.6 Flexural Testing
240(1)
12.2.7 Impact Testing
240(1)
12.2.8 Scanning Electron Microscopy
240(1)
12.3 Results and Discussion
240(11)
12.3.1 Biochar Characterization
240(1)
12.3.1.1 Particle Analyzer
240(1)
12.3.1.2 Fourier Transform (InfraRed) Spectroscopy
240(2)
12.3.1.3 X-ray Diffraction
242(1)
12.3.2 Dynamic Mechanical Analysis
243(4)
12.3.3 Tensile Tests
247(1)
12.3.4 Flexural Tests
248(1)
12.3.5 Impact Tests
249(2)
12.4 Conclusions
251(4)
References
251(4)
13 Development and Sustainability of Biochar Derived from Cashew Nutshell-Reinforced Polymer Matrix Composite
255(10)
Rajendren Sundarakannan
Vigneswaran Shanmugam
Veerasimman Arumugaprabu
Vairavan Manikandan
Paramasivan Sivaranjana
13.1 Introduction
255(2)
13.2 Materials and Methods
257(1)
13.2.1 Biochar Preparation
257(1)
13.2.2 Composite Preparation
257(1)
13.2.3 Mechanical Testing
258(1)
13.3 Results and Discussion
258(5)
13.3.1 Tensile Strength
258(1)
13.3.2 Flexural Strength
259(1)
13.3.3 Impact Strength
260(1)
13.3.4 Hardness
260(1)
13.3.5 Failure Analysis of Cashew Nutshell Waste Extracted Biochar-Reinforced Polymer Composites
261(1)
13.3.5.1 Tensile Strength Failure Analysis
261(1)
13.3.5.2 Flexural Strength Failure Analysis
262(1)
13.3.5.3 Impact Strength Failure Analysis
262(1)
13.4 Conclusion
263(2)
References
263(2)
14 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber-Reinforced Epoxy Composites
265(10)
Banisetti Manoj
Chandrasekar Muthukumar
Chennuri Phani Durga Prasad
Swathi Manickam
Titus I. Benjamin
14.1 Introduction
265(1)
14.1.1 Sisal Fibers
265(1)
14.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite
266(1)
14.2 Materials and Methods
266(1)
14.2.1 Materials
266(1)
14.2.2 Fabrication Method
266(1)
14.2.3 Characterization
266(1)
14.2.3.1 Tensile Test
266(1)
14.2.3.2 Flexural Test
267(1)
14.2.3.3 Moisture Diffusion
267(1)
14.3 Results and Discussion
267(5)
14.3.1 Tensile Properties
267(2)
14.3.2 Flexural Properties
269(2)
14.3.3 Water Absorption
271(1)
14.4 Conclusion
272(3)
References
272(3)
15 Mechanical and Dynamic Properties of Ramie Fiber-Reinforced Composites
275(18)
Manickam Ramesh
Lakshminarasimhan Rajeshkumar
Devarajan Balaji
15.1 Introduction
275(2)
15.2 Mechanical Strength of Ramie Fiber Composites
277(4)
15.3 Dynamic Properties of Ramie Fiber Composites
281(7)
15.3.1 Temperature Influence
283(1)
15.3.2 Storage Modulus
283(1)
15.3.3 Viscous Modulus
284(1)
15.3.4 Damping Factor
284(4)
15.4 Conclusion
288(5)
References
289(4)
16 Fracture Toughness of the Natural Fiber-Reinforced Composites: A Review
293(12)
Haasith Chittimenu
Monesh Pasupureddy
Chandrasekar Muthukumar
Senthitkumar Krishnasamy Senthil Muthu Kumar Thiagamani
Suchart Siengchin
16.1 Introduction
293(5)
16.1.1 Fracture Toughness Tests
294(2)
16.1.2 Mode-I Loading
296(1)
16.1.2.1 Double Cantilever Beam Method (DCB)
296(1)
16.1.2.2 Compact Tensile Method (CT)
296(1)
16.1.2.3 Single-Edge Notch Bend Test (SENB)
296(1)
16.1.3 Mode-II Loading
297(1)
16.1.3.1 End-Notched Flexure Test (ENF)
297(1)
16.1.4 Mode-Ill Loading
297(1)
16.1.4.1 Split Cantilever Beam Method (SCB)
297(1)
16.1.4.2 Edge Crack Torsion Test (ECT)
298(1)
16.1.4.3 Mixed Mode Bend Test (MMB)
298(1)
16.2 Factors Affecting the Fracture Energy of the Biocomposites
298(4)
16.2.1 Fiber Parameters
298(1)
16.2.2 Hybridization
299(1)
16.2.3 Fiber Treatment
299(2)
16.2.4 Aging
301(1)
16.3 Conclusion
302(3)
Acknowledgments
302(1)
References
302(3)
17 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites
305(5)
Arun Prasath Kanagaraj
Amuthakkannan Pandian
Veerasimman Arumugaprabu
Rajendran Deepak Joel Johnson
Vigneswaran Shanmugam
Vairavan Manikandan
17.1 Introduction
305(2)
17.2 Materials and Methods
307(1)
17.2.1 Materials
307(1)
17.2.2 Fabrication of Composites
307(1)
17.2.3 Dynamic Mechanical Analysis
307(1)
17.3 Result and Discussion
308(1)
17.3.1 Damping Factor (Tan <5) Response of Basalt/Flax Fiber Composite
308(1)
17.3.2 Storage Modulus (E') Response of Basalt/Flax Fiber Composite
308(1)
17.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites
309(1)
17.4 Conclusions
309(1)
Acknowledgments 310(1)
References 310(3)
Index 313
Senthilkumar Krishnasamy is Associate Professor, at Kalasalingam Academy of Research and Education, Department of Mechanical Engineering, Krishnankoil, India.

Rajini Nagarajan is Professor in Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India.

Senthil Muthu Kumar Thiagamani Associate Professor at Kalasalingam Academy of Research and Education, Department of Mechanical Engineering, Krishnankoil, India.

Suchart Siengchin is Professor at the Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkuts University of Technology North Bangkok, Bangkok 10800, Thailand.