Muutke küpsiste eelistusi

Medical Image Computing and Computer Assisted Intervention MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, October 812, 2023, Proceedings, Part IX 2023 ed. [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 743 pages, kõrgus x laius: 235x155 mm, kaal: 1181 g, 251 Illustrations, color; 57 Illustrations, black and white; XXXVIII, 743 p. 308 illus., 251 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 14228
  • Ilmumisaeg: 02-Oct-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031439953
  • ISBN-13: 9783031439957
  • Pehme köide
  • Hind: 93,17 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 109,61 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 743 pages, kõrgus x laius: 235x155 mm, kaal: 1181 g, 251 Illustrations, color; 57 Illustrations, black and white; XXXVIII, 743 p. 308 illus., 251 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 14228
  • Ilmumisaeg: 02-Oct-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031439953
  • ISBN-13: 9783031439957
The ten-volume set LNCS 14220, 14221, 14222, 14223, 14224, 14225, 14226, 14227, 14228, and 14229 constitutes the refereed proceedings of the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, which was held in Vancouver, Canada, in October 2023.





The 730 revised full papers presented were carefully reviewed and selected from a total of 2250 submissions. The papers are organized in the following topical sections:





Part I: Machine learning with limited supervision and machine learning transfer learning;





Part II: Machine learning learning strategies; machine learning explainability, bias, and uncertainty;





Part III: Machine learning explainability, bias and uncertainty; image segmentation;





Part IV: Image segmentation;





Part V: Computer-aided diagnosis;





Part VI: Computer-aided diagnosis; computational pathology;





Part VII: Clinical applications abdomen; clinicalapplications breast; clinical applications cardiac; clinical applications dermatology; clinical applications fetal imaging; clinical applications lung; clinical applications musculoskeletal; clinical applications oncology; clinical applications ophthalmology; clinical applications vascular;





 





Part VIII: Clinical applications neuroimaging; microscopy;





Part IX: Image-guided intervention, surgical planning, and data science;





 





Part X: Image reconstruction and image registration.





"Semantic Segmentation of Surgical Hyperspectral Images Under Geometric Domain Shifts" is available open access under a Creative Commons Attribution 4.0 International License via Springerlink.
Image-guided intervention, surgical planning, and data science.