Muutke küpsiste eelistusi

Medical Robotics [Kõva köide]

  • Formaat: Hardback, 412 pages, kõrgus x laius x paksus: 241x163x31 mm, kaal: 767 g
  • Ilmumisaeg: 27-Jan-2012
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1848213344
  • ISBN-13: 9781848213340
Teised raamatud teemal:
  • Formaat: Hardback, 412 pages, kõrgus x laius x paksus: 241x163x31 mm, kaal: 767 g
  • Ilmumisaeg: 27-Jan-2012
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1848213344
  • ISBN-13: 9781848213340
Teised raamatud teemal:
In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field.
For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues.
This book describes the short history of the domain, its specificity and constraints, and mature clinical application areas. It also presents the major approaches in terms of design and control including man-machine interaction modes. A large state of the art is presented and many examples from the literature are included and thoroughly discussed.
It aims to provide both a broad and summary view of this very active domain as well as keys to understanding the evolutions of the domain and to prepare for the future. An insight to clinical evaluation is also proposed, and the book is finished with a chapter on future developments for intra-body robots.
Introduction xi
Chapter 1 Characteristics and State of the Art
1(54)
Etienne Dombre
Michel De Mathelin
Jocelyne Troccaz
1.1 Introduction
1(6)
1.1.1 Characteristics of medical robotics
1(4)
1.1.2 Potential advantages of using a robot in a medical procedure
5(2)
1.2 State of the art
7(35)
1.2.1 Surgery of the head and neck
8(5)
1.2.2 Orthopedic surgery
13(4)
1.2.3 Mini-invasive or laparoscopic surgery
17(6)
1.2.4 Interventional radiology and percutaneous procedures
23(6)
1.2.5 Remote ultrasound
29(4)
1.2.6 Radiotherapy and radiology
33(6)
1.2.7 Other applications
39(3)
1.3 Conclusion
42(1)
1.4 Bibliography
42(13)
Chapter 2 Medical Robotics in the Service of the Patient
55(14)
Alexandre Moreau-Gaudry
Philippe Cinquin
2.1 Introduction
55(3)
2.1.1 Medical robotics: a field in full development
55(1)
2.1.2 How and why has there been such development?
56(1)
2.1.3 Medical service: a complex notion
57(1)
2.2 A cycle of medical service growth
58(6)
2.2.1 The actors
58(3)
2.2.2 A model for the development of the medical service
61(2)
2.2.3 Development diagram
63(1)
2.3 A case study: the ViKY robotic endoscope support system
64(3)
2.3.1 The context
64(1)
2.3.2 ViKY and the progression of medical service
64(2)
2.3.3 Relevance of the evaluation of the medical service
66(1)
2.4 Conclusion
67(1)
2.5 Bibliography
67(2)
Chapter 3 Inter-operative Sensors and Registration
69(32)
Jocelyne Troccaz
3.1 Introduction
69(3)
3.1.1 Summary of the context and the problem
69(1)
3.1.2 Notions of registration, calibration and tracking
70(2)
3.2 Intra-operative sensors
72(4)
3.2.1 Imaging sensors
72(2)
3.2.2 Position sensors
74(1)
3.2.3 Surface sensors
75(1)
3.2.4 Other sensors
76(1)
3.3 Principles of registration
76(11)
3.3.1 Notations and definitions
76(1)
3.3.2 Nature of the transformation
77(1)
3.3.3 Matched information
78(1)
3.3.4 Similarity metrics
79(5)
3.3.5 3D/3D rigid registration
84(2)
3.3.6 Open questions
86(1)
3.4 Case studies
87(9)
3.4.1 Case no. 1 (interventional radiology)
87(1)
3.4.2 Case no. 2
88(2)
3.4.3 Case no. 3 (Velocityy)
90(2)
3.4.4 Case no. 4
92(4)
3.5 Discussion and conclusion
96(1)
3.6 Bibliography
97(4)
Chapter 4 Augmented Reality
101(40)
Stephane Nicolau
Luc Soler
Jacques Marescaux
4.1 Introduction
101(3)
4.2 3D modeling of abdominal structures and pathological structures
104(3)
4.3 3D visualization system for planning
107(1)
4.4 Interactive AR
108(2)
4.4.1 Concept
108(1)
4.4.2 An example application
108(2)
4.4.3 The limits of such a system
110(1)
4.5 Automatic AR
110(12)
4.5.1 Augmented reality with fixed camera(s)
111(9)
4.5.2 AR with a mobile camera
120(2)
4.6 Taking distortions into account
122(2)
4.7 Case Study
124(5)
4.7.1 Percutaneous punctures
124(2)
4.7.2 Bronchoscopic Navigation
126(1)
4.7.3 Neurosurgery
127(2)
4.8 Conclusions
129(1)
4.9 Bibliography
130(11)
Chapter 5 Design of Medical Robots
141(36)
Etienne Dombre
Philippe Poignet
Francois Pierrot
5.1 Introduction
141(4)
5.2 From the characterization of gestures to the design of robots
145(12)
5.2.1 Analysis of the gesture
145(1)
5.2.2 Kinematic and dynamic specifications
145(4)
5.2.3 Kinematic choices
149(8)
5.3 Design methodologies
157(8)
5.3.1 Concept selection
158(3)
5.3.2 Optimization of design parameters
161(4)
5.4 Technological choices
165(2)
5.4.1 Actuators
165(1)
5.4.2 Sensors
166(1)
5.4.3 Material
167(1)
5.5 Security
167(4)
5.5.1 Introduction
167(1)
5.5.2 Security and dependability
168(1)
5.5.3 Risks reduction in medical robotics
168(3)
5.6 Conclusion
171(1)
5.7 Bibliography
172(5)
Chapter 6 Vision-based Control
177(56)
Jacques Gangloff
Florent Nageotte
Philippe Poignet
6.1 Introduction
177(6)
6.1.1 Configurations of the imaging device
178(1)
6.1.2 Type of measurement
179(2)
6.1.3 Type of control
181(2)
6.2 Sensors
183(10)
6.2.1 Imaging devices
184(9)
6.2.2 Localizers
193(1)
6.3 Acquisition of the measurement
193(23)
6.3.1 Acquisition of geometric primitives
194(8)
6.3.2 Tracking of anatomical targets
202(12)
6.3.3 Review of methods for image processing
214(2)
6.4 Control
216(8)
6.4.1 Modeling the visual servoing loop
216(5)
6.4.2 Online identification of the interaction matrix
221(2)
6.4.3 Control laws
223(1)
6.5 Perspectives
224(1)
6.6 Bibliography
225(8)
Chapter 7 Interaction Modeling and Force Control
233(36)
Philippe Poignet
Bernard Bayle
7.1 Modeling interactions during medico-surgical procedures
233(10)
7.1.1 Introduction
233(1)
7.1.2 Properties of tissues with small displacements
234(3)
7.1.3 Non-viscoelastic models
237(1)
7.1.4 Estimation of force models
238(1)
7.1.5 Case study: needle-tissue interactions during a percutaneous intervention
239(4)
7.2 Force control
243(1)
7.3 Force control strategies
244(19)
7.3.1 Implicit force control
244(3)
7.3.2 Explicit force control
247(3)
7.3.3 Stability
250(1)
7.3.4 Choice of a control architecture
251(1)
7.3.5 Application examples
251(12)
7.4 Conclusion
263(1)
7.5 Bibliography
263(6)
Chapter 8 Tele-manipulation
269(34)
Bernard Bayle
Laurent Barbe
8.1 Introduction
269(2)
8.1.1 The limitations of autonomy
269(1)
8.1.2 Non-autonomous modes of intervention
270(1)
8.1.3 Tele-manipulation in the medical field: interest and applications
270(1)
8.2 Tele-manipulation and medical practices
271(7)
8.2.1 Background
271(2)
8.2.2 Action and perception modalities
273(2)
8.2.3 Technology
275(3)
8.3 Tele-manipulation with force feedback
278(20)
8.3.1 Introduction
278(1)
8.3.2 Modeling master-slave tele-manipulators (MST)
279(2)
8.3.3 Transparency and stability
281(3)
8.3.4 Bilateral tele-operation control schemes
284(8)
8.3.5 Improvement of existing techniques for medical issues
292(2)
8.3.6 Example: tele-operated needle insertion in interventional radiology
294(4)
8.3.7 Prospects
298(1)
8.4 Bibliography
298(5)
Chapter 9 Comanipulation
303(48)
Guillaume Morel
Jerome Szewczyk
Marie-Aude Vitrani
9.1 Introduction
303(6)
9.1.1 Tele-manipulate, but without the distance
303(2)
9.1.2 Definitions
305(2)
9.1.3 Features and applications in medical and surgical robotics
307(1)
9.1.4 A word about terminology
308(1)
9.1.5 Contents
308(1)
9.2 General principles of comanipulation
309(7)
9.2.1 Serial comanipulation
309(4)
9.2.2 Parallel comanipulation
313(3)
9.3 Serial comanipulation: intelligent active instrumentation
316(15)
9.3.1 Dexterous instruments for minimally-invasive surgery
316(6)
9.3.2 Tremor filtering in microsurgery
322(4)
9.3.3 Compensation of physiological movements
326(5)
9.4 Parallel comanipulation
331(12)
9.4.1 Comanipulation in transparent mode
331(3)
9.4.2 Passive, active, static and dynamic guides
334(6)
9.4.3 Increase the quality of the tactile perception
340(3)
9.5 A human in the loop
343(3)
9.6 Bibliography
346(5)
Chapter 10 Towards Intracorporeal Robotics
351(46)
Etienne Dombre
Nicolas Chaillet
Michel de Mathelin
10.1 Introduction
351(1)
10.2 Mini-manipulators/tele-operated instrument holders
352(5)
10.2.1 Objectives
352(1)
10.2.2 General description
353(3)
10.2.3 Challenges
356(1)
10.3 Robotized colonoscopes and autonomous capsules
357(5)
10.3.1 Objectives
357(1)
10.3.2 General description
358(2)
10.3.3 Challenges
360(2)
10.4 Active catheters
362(4)
10.4.1 Objectives
362(1)
10.4.2 General description
363(1)
10.4.3 Challenges
363(3)
10.5 Evolution of surgical robotics
366(20)
10.5.1 Towards more autonomous robots
366(3)
10.5.2 Towards a much less invasive surgery
369(2)
10.5.3 Towards the bio-nanorobotics
371(15)
10.6 Additional information
386(2)
10.6.1 Preamble
386(1)
10.6.2 The shape memory alloys (SMA)
387(1)
10.6.3 Electroactive polymers
387(1)
10.7 Bibliography
388(9)
Conclusion 397(2)
Notations 399(2)
Medical Glossary 401(6)
List of Authors 407(2)
Index 409
Jocelyne Troccaz is Research Director, CNRS Equipe GMCAO (Gestes Médico-Chirurgicaux Assistés par Ordinateur) du laboratoire TIMC (Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble)-université Joseph Fourier, Grenoble, France.