Contributors |
|
ix | |
|
1 Reverse Osmosis Membrane Separation Technology |
|
|
1 | (46) |
|
|
|
1.1 Introduction of Reverse Osmosis |
|
|
2 | (4) |
|
1.2 RO Membrane Fabrication |
|
|
6 | (10) |
|
1.3 Membrane Properties and Characterizations |
|
|
16 | (6) |
|
1.4 Membrane Modules and Process Operation |
|
|
22 | (3) |
|
1.5 Concentration Polarization |
|
|
25 | (2) |
|
1.6 Membrane Fouling and Control |
|
|
27 | (4) |
|
|
31 | (7) |
|
|
38 | (9) |
|
|
39 | (6) |
|
|
45 | (2) |
|
2 Materials and Engineering Design of Interfacial Polymerized Thin Film Composite Nanofiltration Membrane for Industrial Applications |
|
|
47 | (38) |
|
|
|
|
|
|
|
48 | (1) |
|
2.2 Membrane Characteristics and Its Performance |
|
|
49 | (3) |
|
|
52 | (4) |
|
2.4 Control of Interfacial Polymerization |
|
|
56 | (2) |
|
2.5 Conventional Applications of TFC Nanofiltration |
|
|
58 | (3) |
|
2.6 Functionalized TFC Nanofiltration and Its Applications |
|
|
61 | (5) |
|
2.7 Separation Principles and Solute Transportation |
|
|
66 | (7) |
|
|
73 | (12) |
|
|
74 | (1) |
|
|
74 | (11) |
|
3 Recent Progresses of Ultrafiltration (UF) Membranes and Processes in Water Treatment |
|
|
85 | (26) |
|
|
|
|
|
|
|
86 | (1) |
|
3.2 Recent Progresses in UF Membrane Development |
|
|
87 | (2) |
|
3.3 Polymeric UF Membrane Configurations |
|
|
89 | (5) |
|
|
94 | (2) |
|
|
96 | (1) |
|
3.6 Recent Progresses in UF Membrane and UF Membrane Processes |
|
|
97 | (5) |
|
|
102 | (9) |
|
|
103 | (1) |
|
|
103 | (7) |
|
|
110 | (1) |
|
4 Microfiltration Membranes |
|
|
111 | (36) |
|
|
|
|
112 | (2) |
|
|
114 | (4) |
|
4.3 Fouling and Its Corrective Measures |
|
|
118 | (5) |
|
|
123 | (5) |
|
|
128 | (10) |
|
4.6 Ceramic Membrane Applications |
|
|
138 | (5) |
|
|
143 | (4) |
|
|
144 | (3) |
|
5 Inorganic Membranes for Gas Separations |
|
|
147 | (34) |
|
|
|
148 | (1) |
|
5.2 Common Considerations and General Principles |
|
|
149 | (5) |
|
5.3 Dense Ceramic Membranes |
|
|
154 | (9) |
|
5.4 Dense Metallic Membranes |
|
|
163 | (6) |
|
5.5 Microporous Membranes |
|
|
169 | (8) |
|
|
177 | (4) |
|
|
178 | (1) |
|
|
179 | (2) |
|
6 Pervaporation and Vapor Separation |
|
|
181 | (52) |
|
|
|
|
|
182 | (2) |
|
|
184 | (3) |
|
6.3 Fabrication of Pervaporation and Vapor Separation Membranes |
|
|
187 | (4) |
|
6.4 Pervaporation Membranes |
|
|
191 | (24) |
|
|
215 | (3) |
|
6.6 Useful Characterization Methods for Pervaporation and Vapor Separation Membranes |
|
|
218 | (1) |
|
6.7 Conclusions and Perspective |
|
|
218 | (15) |
|
|
219 | (14) |
|
7 Pervaporation and Hybrid Vacuum Membrane Distillation Technology and Applications |
|
|
233 | (18) |
|
|
|
234 | (2) |
|
7.2 Vacuum Membrane Distillation and Hybrid Pervaporation Membranes |
|
|
236 | (1) |
|
7.3 AZEOSEP™, VOC-SEP™, and AQUA-SEP™: Products of Petro Sep |
|
|
237 | (1) |
|
7.4 Solvent Recovery and Wastewater Treatment |
|
|
238 | (2) |
|
7.5 Recovery of Nitrates, Solvents, and Water From Wastewater of Gold and Silver Plating Industry by Using Hybrid VOC SEP™/AQUA SEP™ Hybrid Membrane and Distillation |
|
|
240 | (1) |
|
7.6 Recovery of MEG, Solvents, Salts, and Water by Using Hybrid AZEO SEP™, VOC SEP™ System |
|
|
241 | (1) |
|
7.7 Production of Sugar From MSW by AQUA SEP™, VOC SEP™ and AZEO SEP™ Systems |
|
|
242 | (2) |
|
7.8 Production of L-Quebrachitol by Using AQUA SEP™ and VOC SEP™ Hybrid System |
|
|
244 | (1) |
|
7.9 Recovery of Water in Mining Wastewater Treatment by Using AQUA SEP™ |
|
|
244 | (3) |
|
7.10 AZEO SEP™ Used in a Membrane Reactor |
|
|
247 | (1) |
|
|
247 | (4) |
|
|
250 | (1) |
|
8 An Overview of Membrane Distillation |
|
|
251 | (32) |
|
|
|
Mohd Hafiz Dzarfan Othman |
|
|
|
|
|
|
252 | (1) |
|
|
253 | (5) |
|
|
258 | (5) |
|
8.4 Hydrophobization of Membranes for MD |
|
|
263 | (10) |
|
|
273 | (2) |
|
|
275 | (8) |
|
|
276 | (7) |
|
9 Hemodialysis Membrane for Blood Purification Process |
|
|
283 | (32) |
|
|
Muhammad Nidzhom Zainol Abidin |
|
|
|
|
|
|
|
Mohd Hafiz Dzarfan Othman |
|
|
|
|
|
284 | (2) |
|
9.2 Properties of Hemodialysis Membrane |
|
|
286 | (10) |
|
9.3 The Membrane Used in Hemodialysis |
|
|
296 | (9) |
|
9.4 Preparation of Hemodialysis Membrane |
|
|
305 | (3) |
|
|
308 | (7) |
|
|
309 | (6) |
|
10 Forward Osmosis for Desalination Application |
|
|
315 | (24) |
|
|
|
|
|
|
|
Mohd Hafiz Dzarfan Othman |
|
|
|
10.1 Definition and Concept |
|
|
316 | (2) |
|
10.2 Most Recognized FO Membrane |
|
|
318 | (1) |
|
10.3 FO Membrane Desalination Performance Evaluations |
|
|
318 | (4) |
|
10.4 Factors That Affecting FO Performance |
|
|
322 | (4) |
|
10.5 Mitigation Methods to Reduce ICP |
|
|
326 | (8) |
|
|
334 | (5) |
|
|
334 | (1) |
|
|
335 | (4) |
|
11 Pressure-Retarded Osmosis |
|
|
339 | (22) |
|
Norzeti Hanani Mohd Ripin |
|
|
|
|
|
|
|
339 | (4) |
|
11.2 Theories and Basic PRO Principles |
|
|
343 | (4) |
|
11.3 Membranes for Pressure Retarded Osmosis |
|
|
347 | (1) |
|
11.4 Cellulose Acetate Membrane |
|
|
348 | (1) |
|
11.5 Thin Film Composite Membrane |
|
|
349 | (2) |
|
11.6 Thin Film Nanocomposite |
|
|
351 | (3) |
|
|
354 | (1) |
|
|
355 | (1) |
|
11.9 Conclusion and Future Prospective |
|
|
356 | (5) |
|
|
358 | (1) |
|
|
358 | (1) |
|
|
359 | (2) |
|
12 Adsorptive Membranes for Heavy Metals Removal From Water |
|
|
361 | (40) |
|
|
|
Mohamad Izrin Mohamad Esham |
|
|
Mohd Hafiz Dzarfan Othman |
|
|
|
|
|
|
362 | (1) |
|
12.2 A Conventional Technique for Heavy Metals Removal |
|
|
363 | (9) |
|
12.3 Hybrid Adsorptive Polymeric Membranes for Heavy Metals Removal |
|
|
372 | (23) |
|
12.4 Concluding Remarks and Perspectives |
|
|
395 | (6) |
|
|
396 | (1) |
|
|
396 | (4) |
|
|
400 | (1) |
|
13 Hybrid Processes: Membrane Bioreactor |
|
|
401 | (70) |
|
|
|
|
|
|
402 | (1) |
|
13.2 Membrane Materials Selection |
|
|
403 | (4) |
|
13.3 Membrane Fabrication |
|
|
407 | (12) |
|
13.4 Membrane Characterization |
|
|
419 | (7) |
|
13.5 Separation Mechanism |
|
|
426 | (7) |
|
|
433 | (29) |
|
|
462 | (9) |
|
|
462 | (9) |
Index |
|
471 | |