Muutke küpsiste eelistusi

Meshfree Methods for Partial Differential Equations 2003 ed. [Pehme köide]

Edited by , Edited by
  • Formaat: Paperback / softback, 471 pages, kõrgus x laius: 235x155 mm, kaal: 813 g, 11 Illustrations, color; 10 Illustrations, black and white; IX, 471 p. 21 illus., 11 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computational Science and Engineering 26
  • Ilmumisaeg: 18-Sep-2002
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540438912
  • ISBN-13: 9783540438915
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 471 pages, kõrgus x laius: 235x155 mm, kaal: 813 g, 11 Illustrations, color; 10 Illustrations, black and white; IX, 471 p. 21 illus., 11 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computational Science and Engineering 26
  • Ilmumisaeg: 18-Sep-2002
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540438912
  • ISBN-13: 9783540438915
Teised raamatud teemal:
Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.

Muu info

Springer Book Archives
Meshless and Generalized Finite Element Methods: A Survey of Some Major Results
1(20)
I. Babuska
U. Banerjee
J. E. Osborn
Adaptive Meshfree Method of Backward Characteristics for Nonlinear Transport Equations
21(16)
Jorn Behrens
Armin Iske
Martin Kaser
New Methods for Discontinuity and Crack Modeling in EFG
37(14)
Ted Belytschko
Giulio Ventura
Jingxiao Xu
SPH Simulations of MHD Shocks Using a Piecewise Constant Smoothing Length Profile
51(12)
Steinar Borve
Marianne Omang
Jan Trulsen
On the Numerical Solution of Linear Advection-Diffusion Equation using Compactly Supported Radial Basis Functions
63(12)
Ismail Boztosun
Abdellatif Charafi
Dervis Boztosun
New RBF Collocation Methods and Kernel RBF with Applications
75(12)
Wen Chen
Tuned Local Regression Estimators for the Numerical Solution of Differential Equations
87(18)
Gary A. Dilts
Aamer Haque
John Wallin
Approximate Moving Least-Squares Approximation with Compactly Supported Radial Weights
105(12)
Gregory E. Fasshauer
Coupling Finite Elements and Particles for Adaptivity
117(14)
Sonia Fernandez-Mendez
Antonio Huerta
A Hamiltonian Particle-Mesh Method for the Rotating Shallow-Water Equations
131(12)
Jason Frank
Georg Gottwald
Sebastian Reich
Fast Multi-Level Meshless Methods Based on the Implicit Use of Radial Basis Functions
143(18)
Csaba Gaspar
A Particle-Partition of Unity Method-Part IV: Parallelization
161(32)
Michael Griebel
Marc Alexander Schweitzer
Some Studies of the Reproducing Kernel Particle Method
193(18)
Weimin Han
Xueping Meng
Consistency by Correcting Coefficients in the Finite-Volume-Particle Method
211(12)
Dietmar Hietel
Rainer Kech
Do Finite Volume Methods Need a Mesh?
223(16)
Michael Junk
An Upwind Finite Pointset Method (FPM) for Compressible Euler and Navier-Stokes Equations
239(12)
Jorg Kuhnert
Adaptive Galerkin Particle Method
251(16)
Hongsheng Lu
Jiun-Shyan Chen
An Adaptivity Procedure Based on the Gradient of Strain Energy Density and its Application in Meshless Methods
267(14)
Yunhua Luo
Ulrich Haussler-Combe
New Developments in Smoothed Particle Hydrodynamics
281(10)
Joseph J. Monaghan
The Distinct Element Method - Application to Structures in Jointed Rock
291(16)
Joseph Morris
Lew Glenn
Stephen Blair
Advance Diffraction Method as a Tool for Solution of Complex Non-Convex Boundary Problems
307(12)
Boris Muravin
Eli Turkel
On the Stochastic Weighted Particle Method
319(8)
Endar H. Nugrahani
Sergej Rjasanow
The SPH/MLSPH Method for the Simulation of High Velocity Concrete Fragmentation
327(12)
Timon Rabczuk
Josef Eibl
Lothar Stempniewski
Stability of DPD and SPH
339(20)
Philip W. Randles
Albert G. Petschek
Larry D. Libersky
Carl T. Dyka
A New Meshless Method - Finite-Cover Based Element Free Method
359(14)
Rong Tian
Maotian Luan
Qing Yang
Finite Pointset Method Based on the Projection Method for Simulations of the Incompressible Navier-Stokes Equations
373(16)
Sudarshan Tiwari
Jorg Kuhnert
LPRH - Local Polynomial Regression Hydrodynamics
389(12)
John F. Wallin
Aamer Haque
On Multigrid Methods for Generalized Finite Element Methods
401(18)
Jinchao Xu
Ludmil T. Zikatanov
The Convergence of the Finite Mass Method for Flows in Given Force and Velocity Fields
419(22)
Harry Yserentant
Survey of Multi-Scale Meshfree Particle Methods
441(18)
Lucy T. Zhang
Wing K. Liu
Shao F. Li
Dong Qian
Su Hao
Appendix. Color Plates 459