List of Figures |
|
xi | |
List of Tables |
|
xxiii | |
Preface |
|
xxv | |
Authors |
|
xxvii | |
1 Introduction |
|
1 | (16) |
|
1.1 Natural Materials and Metamaterials |
|
|
1 | (1) |
|
1.2 Homogeneous Metamaterials: Several Special Cases |
|
|
2 | (5) |
|
1.2.1 Left-Handed Materials |
|
|
2 | (1) |
|
1.2.2 Zero-Refractive-Index Metamaterials |
|
|
3 | (1) |
|
1.2.3 Negative-Epsilon Materials |
|
|
4 | (2) |
|
1.2.4 Negative-Mu Materials |
|
|
6 | (1) |
|
|
7 | (2) |
|
1.4 Inhomogeneous Metamaterials |
|
|
9 | (3) |
|
|
9 | (1) |
|
1.4.2 Quasi-Conformal Mapping Method |
|
|
10 | (1) |
|
1.4.3 Transformation Optics |
|
|
11 | (1) |
|
1.5 Structure of This Book |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (4) |
2 Effective Medium Theory |
|
17 | (12) |
|
|
17 | (4) |
|
2.2 Retrieval Methods of Effective Medium Parameters |
|
|
21 | (3) |
|
2.3 General Effective Medium Theory |
|
|
24 | (4) |
|
|
28 | (1) |
3 Artificial Particles: "Man-Made Atoms" or "Meta-Atoms" |
|
29 | (38) |
|
3.1 Electrically Resonant Particles |
|
|
30 | (4) |
|
3.2 Magnetically Resonant Particles |
|
|
34 | (2) |
|
3.3 Dielectric-Metal Resonant Particles |
|
|
36 | (2) |
|
3.4 Complementary Particles |
|
|
38 | (5) |
|
|
43 | (5) |
|
3.6 Nonresonant Particles |
|
|
48 | (3) |
|
|
51 | (6) |
|
|
57 | (5) |
|
|
62 | (5) |
4 Homogeneous Metamaterials: Super Crystals |
|
67 | (80) |
|
4.1 Homogeneous Metamaterials: Periodic Arrangements of Particles |
|
|
68 | (21) |
|
|
68 | (11) |
|
|
79 | (6) |
|
4.1.3 Zero-Index Metamaterials |
|
|
85 | (1) |
|
|
85 | (4) |
|
4.2 Single-Negative Metamaterials |
|
|
89 | (12) |
|
4.2.1 Evanescent-Wave Amplification in MNG—ENG Bilayer Slabs |
|
|
89 | (8) |
|
4.2.2 Partial Focusing by Anisotropic MNG Metamaterials |
|
|
97 | (4) |
|
4.3 Double-Negative Metamaterials |
|
|
101 | (11) |
|
4.3.1 Strong Localization of EM Waves Using Four-Quadrant LHM—RHM Open Cavities |
|
|
101 | (6) |
|
4.3.2 Free-Space LHM Super Lens Based on Fractal-Inspired DNG Metamaterials |
|
|
107 | (5) |
|
4.4 Zero-Index Metamaterials |
|
|
112 | (15) |
|
4.4.1 Electromagnetic Tunneling through a Thin Waveguide Channel Filled with ENZ Metamaterials |
|
|
112 | (7) |
|
4.4.2 Highly Directive Radiation by a Line Source in Anisotropic Zero-Index Metamaterials |
|
|
119 | (3) |
|
4.4.3 Spatial Power Combination for Omnidirectional Radiation via Radial AZIM |
|
|
122 | (3) |
|
4.4.4 Directivity Enhancement to Vivaldi Antennas Using Compact AZIMs |
|
|
125 | (2) |
|
4.5 Double-Positive Metamaterials |
|
|
127 | (13) |
|
4.5.1 Transmission Polarizer Based on Anisotropic DPS Metamaterials |
|
|
127 | (5) |
|
4.5.2 Increasing Bandwidth of Microstrip Antennas by Magneto-Dielectric Metamaterials Loading |
|
|
132 | (8) |
|
Appendix: 2D Near-Field Mapping Apparatus |
|
|
140 | (1) |
|
|
141 | (6) |
5 Random Metamaterials: Super Noncrystals |
|
147 | (22) |
|
5.1 Random Metamaterials: Random Arrangements of Particles |
|
|
147 | (5) |
|
5.1.1 Randomly Gradient Index Metamaterial |
|
|
147 | (3) |
|
5.1.2 Metasurface with Random Distribution of Reflection Phase |
|
|
150 | (2) |
|
5.2 Diffuse Reflections by Metamaterial Coating with Randomly Distributed Gradients of Refractive Index |
|
|
152 | (11) |
|
5.2.1 Role of Amount of Subregions or Length of Coating |
|
|
157 | (1) |
|
5.2.2 Influence of Impedance Mismatch |
|
|
157 | (1) |
|
5.2.3 Influence of Random Distribution Mode |
|
|
158 | (1) |
|
5.2.4 Experimental Verification of Diffuse Reflections |
|
|
159 | (4) |
|
5.3 RCS Reduction by Metasurface with Random Distribution of Reflection Phase |
|
|
163 | (3) |
|
|
166 | (3) |
6 Inhomogeneous Metamaterials: Super Quasicrystals |
|
169 | (22) |
|
6.1 Inhomogeneous Metamaterials: Particularly Nonperiodic Arrays of Meta-Atoms |
|
|
169 | (2) |
|
6.2 Geometric Optics Method: Design of Isotropic Metamaterials |
|
|
171 | (2) |
|
6.3 Quasi-Conformal Mapping: Design of Nearly Isotropic Metamaterials |
|
|
173 | (3) |
|
6.4 Optical Transformation: Design of Anisotropic Metamaterials |
|
|
176 | (2) |
|
|
178 | (10) |
|
6.5.1 Invisibility Cloaks |
|
|
178 | (2) |
|
|
180 | (2) |
|
6.5.3 High-Performance Antennas |
|
|
182 | (3) |
|
6.5.4 Illusion-Optics Devices |
|
|
185 | (3) |
|
|
188 | (3) |
7 Gradient-Index Inhomogeneous Metamaterials |
|
191 | (42) |
|
7.1 Several Representative GRIN Metamaterials |
|
|
194 | (3) |
|
7.1.1 Hole-Array Metamaterial |
|
|
194 | (1) |
|
7.1.2 I-Shaped Metamaterial |
|
|
195 | (1) |
|
7.1.3 Waveguide Metamaterial |
|
|
195 | (2) |
|
7.2 2D Planar Gradient-Index Lenses |
|
|
197 | (4) |
|
7.2.1 Derivation of the Refractive Index Profile |
|
|
197 | (1) |
|
7.2.2 Full-Wave Simulations (Continuous Medium) |
|
|
198 | (1) |
|
7.2.3 Hole-Array Metamaterials |
|
|
199 | (1) |
|
7.2.4 Full-Wave Simulations (Discrete Medium) |
|
|
200 | (1) |
|
7.2.5 Experimental Realization |
|
|
201 | (1) |
|
|
201 | (6) |
|
7.3.1 Refractive Index Profile |
|
|
202 | (1) |
|
7.3.2 Ray Tracing Performance |
|
|
202 | (2) |
|
7.3.3 Full-Wave Simulations (Continuous Medium) |
|
|
204 | (1) |
|
7.3.4 Metamaterials Utilized |
|
|
204 | (1) |
|
|
204 | (3) |
|
7.4 2D Half Maxwell Fisheye Lens |
|
|
207 | (5) |
|
7.4.1 Refractive Index Profile |
|
|
207 | (1) |
|
7.4.2 Ray Tracing Performance |
|
|
208 | (1) |
|
7.4.3 Full-Wave Simulations (Continuous Medium) |
|
|
208 | (1) |
|
7.4.4 Metamaterials Utilized |
|
|
209 | (1) |
|
|
210 | (2) |
|
7.5 3D Planar Gradient-Index Lens |
|
|
212 | (6) |
|
7.5.1 Refractive Index Profile |
|
|
213 | (1) |
|
7.5.2 Full-Wave Simulations (Continuous Medium) |
|
|
214 | (1) |
|
7.5.3 Metamaterials Utilized |
|
|
215 | (2) |
|
|
217 | (1) |
|
7.6 3D Half Luneburg Lens |
|
|
218 | (5) |
|
7.6.1 Refractive Index Profile |
|
|
219 | (1) |
|
7.6.2 Ray Tracing Performance |
|
|
219 | (1) |
|
7.6.3 Full-Wave Simulations |
|
|
220 | (1) |
|
7.6.4 Metamaterials Utilized |
|
|
221 | (1) |
|
|
222 | (1) |
|
7.7 3D Maxwell Fisheye Lens |
|
|
223 | (2) |
|
7.7.1 Refractive Index Profile |
|
|
223 | (1) |
|
7.7.2 Ray Tracing Performance |
|
|
223 | (1) |
|
7.7.3 Full-Wave Simulations and Experiments |
|
|
224 | (1) |
|
7.8 Electromagnetic Black Hole |
|
|
225 | (5) |
|
7.8.1 Refractive Index Profile |
|
|
226 | (1) |
|
7.8.2 Ray Tracing Performance |
|
|
227 | (1) |
|
7.8.3 Full-Wave Simulations (Continuous Medium) |
|
|
227 | (1) |
|
7.8.4 Metamaterials Utilized |
|
|
228 | (1) |
|
|
228 | (2) |
|
|
230 | (3) |
8 Nearly Isotropic Inhomogeneous Metamaterials |
|
233 | (38) |
|
8.1 2D Ground-Plane Invisibility Cloak |
|
|
233 | (8) |
|
8.2 2D Compact Ground-Plane Invisibility Cloak |
|
|
241 | (6) |
|
8.3 2D Ground-Plane Illusion-Optics Devices |
|
|
247 | (4) |
|
8.4 2D Planar Parabolic Reflector |
|
|
251 | (5) |
|
8.5 3D Ground-Plane Invisibility Cloak |
|
|
256 | (6) |
|
8.6 3D Flattened Luneburg Lens |
|
|
262 | (6) |
|
|
268 | (3) |
9 Anisotropic Inhomogeneous Metamaterials |
|
271 | (28) |
|
9.1 Spatial Invisibility Cloak |
|
|
271 | (3) |
|
9.2 D.C. Circuit Invisibility Cloak |
|
|
274 | (7) |
|
9.3 Spatial Illusion-Optics Devices |
|
|
281 | (10) |
|
|
281 | (2) |
|
9.3.2 Material Conversion Devices |
|
|
283 | (3) |
|
9.3.3 Virtual Target Generation Devices |
|
|
286 | (5) |
|
9.4 Circuit Illusion-Optics Devices |
|
|
291 | (5) |
|
|
296 | (3) |
10 Conclusions and Remarks |
|
299 | (6) |
|
|
299 | (1) |
|
10.2 New Trends of Metamaterials |
|
|
300 | (3) |
|
10.2.1 Planar Metamaterials: Metasurfaces |
|
|
300 | (1) |
|
10.2.2 Coding Metamaterials and Programmable Metamaterials |
|
|
301 | (1) |
|
10.2.3 Plasmonic Metamaterials |
|
|
302 | (1) |
|
|
303 | (2) |
Index |
|
305 | |