Muutke küpsiste eelistusi

Methods for Enhanced Oil Recovery: Fundamentals and Practice [Kõva köide]

(Oil Gas Scientific Research Project Institute (SOCAR), Baku, Azerbaijan), (Oil Gas Scientific Research Project Institute (SOCAR), Baku, Azerbaijan)
  • Formaat: Hardback, 432 pages, kõrgus x laius: 244x170 mm
  • Ilmumisaeg: 03-Sep-2025
  • Kirjastus: Wiley-VCH Verlag GmbH
  • ISBN-10: 3527354166
  • ISBN-13: 9783527354160
  • Formaat: Hardback, 432 pages, kõrgus x laius: 244x170 mm
  • Ilmumisaeg: 03-Sep-2025
  • Kirjastus: Wiley-VCH Verlag GmbH
  • ISBN-10: 3527354166
  • ISBN-13: 9783527354160
An authoritative theoretical explanation of enhanced oil recovery combined with practical, how-to instructions on the real-world implementation of EOR

In Methods for Enhanced Oil Recovery: Fundamentals and Practice, a team of distinguished researchers delivers a comprehensive and in-depth exploration of the rapidly evolving field of enhanced oil recovery (EOR). The authors dive deep into the granular details of petroleum geology, hydrocarbon classification, and oil reserve assessment, while also explaining a variety of EOR techniques, like thermal, chemical, gas injection, and microbial approaches.

The book is heavily focused on advanced methods of EOR with accompanying analyses of contemporary techniques. It includes innovative new approaches to the discipline, presenting each method with a theoretical background and practical guidelines for implementation in the field. Readers will also find specific coverage of the criteria they should use to select appropriate EOR methods for specific reservoirs and the technological processes necessary to implement these methods in operational settings.

Inside the book:





A thorough introduction to the laboratory evaluation of oil-bearing rock properties Contemporary case studies from oil fields in a variety of regions that illustrate the benefits and challenges of implementing EOR technologies Practical discussions of the economic implications of EOR methods Complete treatments of fundamental reservoir engineering concepts

Perfect for students of petroleum engineering, Methods for Enhanced Oil Recovery: Fundamentals and Practice will also benefit practicing petroleum engineers seeking a solid theoretical foundation into EOR combined with real-world, practical insights they can apply immediately.
Preface xv

Introduction xvii

1 Basic Concepts in Reservoir Engineering 1

1.1 Rocks and Their Types 1

1.1.1 The Rock Cycle 2

1.1.2 Erosion 5

1.2 Forms of Occurrence of Sedimentary Rocks 5

1.3 Hydrocarbon Reservoirs 6

1.4 Oil and Gas Traps 7

1.4.1 Structural Traps 8

1.4.2 Lithological Traps 8

1.4.3 Stratigraphic Traps 9

1.5 Rock Porosity 9

1.5.1 Primary and Secondary Porosity 9

1.5.2 Effective and Total Porosity 10

1.5.3 Diagenesis and Its Impact 10

1.5.4 Types of Porosity in Reservoir Rocks 12

1.6 Rock Permeability 14

1.6.1 Types of Permeabilities 16

1.6.2 Klinkenberg Effect 17

1.7 Geological Heterogeneity of Rocks 18

1.8 Saturations 19

1.8.1 Saturation Distribution in Reservoirs 19

1.8.2 Fluid Distribution in Reservoirs 20

1.9 Resistivity 23

1.9.1 Electrical Properties of Rocks 24

1.9.2 Basic Concepts: Ohms Law and Resistivity 24

1.9.3 Formation Resistivity Factor 25

1.9.4 Tortuosity and Porosity 26

1.9.5 Empirical Relationships and Cementation 26

1.9.6 Resistivity Index and Water Saturation 26

1.10 Capillary Pressure 27

Contents

ftoc.indd 5 6/17/25 3:11 PM

vi Contents

1.10.1 Capillary Pressure in Reservoirs 29

1.10.2 Laboratory Capillary Pressure Measurements 30

1.10.3 Entry Pressure 31

1.10.4 HysteresisImbibition Versus Drainage 31

1.10.5 Permeability Effects 32

1.10.6 Relative PermeabilityCapillary Pressure Relationship 33

1.11 Types of Reservoir Fluids 36

1.11.1 Black Oil 36

1.11.2 Volatile Oil 37

1.11.3 Gas Condensate 37

1.11.4 Wet Gas 37

1.11.5 Dry Gas 39

2 Fluid Flow in Porous Media 41

2.1 Introduction 41

2.2 Applications of Darcys Law 42

2.2.1 Radial Flow 42

2.2.2 Permeability of Combination Layers 43

2.2.2.1 Case I: Interbedded Reservoir Rocks 43

2.2.2.2 Case II: Composite Reservoirs 44

2.2.2.3 Radial Flow in Multiple Beds 44

2.2.3 High-velocity Flow 45

2.2.3.1 Estimating the Non-Darcy Flow Coefficient ( ) 46

2.2.4 Fracture Flow 46

2.2.4.1 Effect of Fracture Shape 48

2.2.4.2 Hydraulic Radius of a Fracture 49

2.3 Differential Equations for Fluid Flow 50

2.3.1 Real Gas Flow in Porous Media 52

2.3.2 Conservation Principle in Fluid Flow 52

2.3.2.1 Initial and Boundary Conditions 53

2.3.3 Discontinuities in Porous Media 54

2.4 Steady-state Flow 54

2.5 Basic Solutions of the Constant Terminal Rate Case for Radial

Models 55

2.5.1 Initial Condition 56

2.5.2 Boundary Conditions 56

2.5.3 Solution and Flow Regimes 56

2.5.4 The Steady-state Solution 56

2.5.4.1 Solution Using Darcys Law 58

2.5.5 Non-steady-state Flow Regimes and Dimensionless Variables 58

2.5.6 Unsteady State Solution 59

2.5.6.1 General Considerations 59

2.5.6.2 Hurst and Van Everdingen Solution 61

2.5.6.3 The Line Source Solution 63

2.5.6.3.1 Range of Application and Limitations 66

2.5.6.4 The Skin Factor 67

ftoc.indd 6 6/17/25 3:11 PM

Contents vii

2.5.7 Semi-steady State Solution 69

2.5.7.1 Pressure Drop from Initial Reservoir Pressure 71

2.5.7.2 Generalized Reservoir Geometry: Flowing Equation under Semi-steady

State Conditions 72

2.5.8 The Application of the CTR Solution in Well Testing 73

2.6 The Constant Terminal Pressure Solution 76

2.7 Superposition 76

2.7.1 Effects of Multiple Wells 77

2.7.2 Principle of Superposition and Approximation of Variable-rate
Pressure

Histories 78

2.7.3 Effects of Rate Changes 81

2.7.4 Simulating Boundary Effects (Image Wells) 83

2.8 Ideal Gas Flow 86

2.8.1 Streamlines, Isopotentials, and Source/Sink Representation 86

3 Classification of Hydrocarbons and Oil Reserves 89

3.1 Common Classification of Hydrocarbons 89

3.2 Classification of Oil Reserves 90

3.2.1 Possible ORF 90

3.2.2 Degree of Proof of Reserves 90

3.2.3 Current State of Production and Field Development 91

3.2.4 Energy Resource 92

3.3 Oil Recovery Factor 93

3.4 SPE/WPC/AAPG Classification of Reserves 93

3.4.1 Resource Uncertainty Categories 98

3.4.2 Risk-based Philosophy 99

3.4.3 Uncertainty-based Philosophy 99

3.4.4 Project Status Categories 100

3.4.5 Prospective Resources 101

3.5 Russian Classification of Reserves 103

3.5.1 Explored Reserves 103

3.5.2 Preliminary Estimated Reserves 104

3.5.3 Potential Resources 104

3.5.4 Forecasted Resources 105

3.5.5 Evaluation Methods 105

3.5.6 Regulatory Framework 105

3.6 The United Nations Framework Classification for Resources 105

3.6.1 Key Components of UNFC 106

3.6.1.1 E AxisEnvironmental-Socio-Economic Viability 106

3.6.1.2 F AxisTechnical Feasibility and Maturity 107

3.6.1.3 G AxisDegree of Confidence 108

3.6.2 Classes and Subclasses 108

3.6.3 Detailed Explanation of Subcategories 109

3.6.3.1 E Axis Subcategories 109

3.6.3.2 F Axis Subcategories 109

3.6.3.3 G Axis Subcategories 109

ftoc.indd 7 6/17/25 3:11 PM

viii Contents

4 Oil Recovery Methods 113

4.1 Introduction 113

4.2 Primary Recovery 113

4.3 Secondary Recovery 113

4.3.1 Water Injection 114

4.3.2 Gas Injection 116

4.4 Tertiary Recovery 117

4.5 Sweep Efficiency 120

5 Thermal Enhanced Oil Recovery (EOR) 123

5.1 Introduction 123

5.2 Steam Injection 123

5.2.1 Process Mechanism 124

5.2.2 Applicability Criteria 125

5.2.3 Field Implementation 126

5.2.4 Implementation Technology 128

5.3 In situ Combustion 131

5.3.1 Process Mechanism 132

5.3.1.1 Dry Forward Combustion 132

5.3.1.2 Wet Forward Combustion 133

5.3.1.3 Reverse Combustion 134

5.3.2 Applicability Criteria 135

5.3.3 Field Implementation 137

5.3.4 Implementation Technology 138

6 Gas Flooding 143

6.1 Introduction 143

6.2 Injection of Hydrocarbon Gases 145

6.2.1 Process Mechanism 146

6.2.2 Applicability Criteria 153

6.2.3 Field Implementation 154

6.2.4 Implementation Technology 155

6.3 Nitrogen Injection 157

6.3.1 Process Mechanism 158

6.3.2 Applicability Criteria 160

6.3.3 Field Implementation 161

6.3.4 Implementation Technology 163

6.4 CO2 Injection 167

6.4.1 Process Mechanism 169

6.4.2 Applicability Criteria 171

6.4.3 Field Implementation 171

6.4.4 Implementation Technology 175

6.5 WaterGas Impact on the Formation 180

6.5.1 Process Mechanism 181

6.5.2 Applicability Criteria 184

ftoc.indd 8 6/17/25 3:11 PM

Contents ix

6.5.3 Field Implementation 186

6.5.4 Implementation Technology 189

7 Chemical Enhanced Oil Recovery (EOR) 197

7.1 Introduction 197

7.2 Polymer Flooding 198

7.2.1 Process Mechanism 198

7.2.2 Applicability Criteria 202

7.2.3 Field Implementation 202

7.2.4 Implementation Technology 204

7.3 Micellar-polymer Flooding 205

7.3.1 Process Mechanism 205

7.3.1.1 Structure and Composition of Micellar Solutions 207

7.3.2 Applicability Criteria 210

7.3.3 Field Implementation 210

7.3.4 Implementation Technology 213

7.3.4.1 Injection Sequence, Composition, and Structure of Solutions 213

7.3.4.2 Well Placement 213

7.4 Alkaline Flooding 214

7.4.1 Process Mechanism 214

7.4.1.1 Oil Activity 214

7.4.1.2 Rock Wettability 214

7.4.1.3 Reservoir Heterogeneity 215

7.4.1.4 Effect of Salts 216

7.4.1.5 Influence of Clays 216

7.4.1.6 Carbonate Reservoirs 216

7.4.2 Applicability Criteria 217

7.4.3 Field Implementation 218

7.4.4 Implementation Technology 219

7.4.4.1 Alkaline Flooding Options 219

7.4.4.2 Preparation of an Alkaline Solution 222

7.4.4.3 Fields with High-viscosity Oils 222

7.4.4.4 Well Placement 223

8 Microbial EOR 225

8.1 Introduction 225

8.2 Introduction to Microorganisms in MEOR 225

8.2.1 Environmental Factors Affecting Microorganisms 225

8.2.1.1 Temperature 225

8.2.1.2 pH 226

8.2.1.3 Salinity 227

8.2.2 Biosurfactants 227

8.2.3 Biopolymers 231

8.2.3.1 Selective Plugging Strategies 231

8.2.4 Biofilms 233

ftoc.indd 9 6/17/25 3:11 PM

x Contents

8.2.4.1 Composition and Properties 234

8.2.4.2 EPS Production Influences 235

8.2.4.3 Representative Biofilm-bacterial Species 235

8.2.5 Biogenic Gases 236

8.2.6 Solvents and Acids 237

8.3 Process Mechanism of MEOR 237

8.4 Applicability Criteria 241

8.5 Field Implementations 242

8.6 Implementation Technology 243

9 Forefront EOR 245

9.1 Introduction 245

9.2 In Depth Fluid Diversion 245

9.2.1 Injection of Thermoactive Polymers 245

9.2.1.1 Process Mechanism 246

9.2.1.2 Applicability Criteria 247

9.2.1.3 Field Implementations 247

9.2.1.4 Implementation Technology 248

9.2.2 Injection of Colloidal Dispersed Gels 248

9.2.2.1 Process Mechanism 248

9.2.2.2 Applicability Criteria 249

9.2.2.3 Completed Projects 249

9.2.2.4 Implementation Technology 252

9.2.3 Injection of Preformed Particle Gels 254

9.2.3.1 Process Mechanism 254

9.2.3.2 Applicability Criteria 254

9.2.3.3 Field Implementation 255

9.2.3.4 Implementation Technology 255

9.3 Injection of Low-salinity Water 256

9.3.1 Process Mechanism 257

9.3.2 Applicability Criteria 258

9.3.3 Field Implementation 259

9.3.4 Implementation Technology 260

9.4 High Pressure Air Injection 261

9.4.1 Process Mechanism 262

9.4.2 Applicability Criteria 264

9.4.3 Field Implementation 264

9.4.4 Implementation Technology 268

9.5 Overview of Organic Oil Recovery Methods 268

10 Practical Implementation of Enhanced Oil Recovery (EOR) 281

10.1 Screening Assessment 281

10.2 Phase Behavior of Formation Fluids and Core Analysis 284

10.2.1 Study of the Phase Behavior of Formation Fluids 284

10.2.2 Core Analysis 285

ftoc.indd 10 6/17/25 3:11 PM

Contents xi

10.3 EOR Simulation 286

10.3.1 Geological Modeling 286

10.3.2 Hydrodynamic Modeling 291

10.3.3 Hydrodynamic Modeling of EOR 292

10.4 Implementation of EOR 294

10.5 Technology Readiness Level 297

11 Laboratory Evaluation of Oil-bearing Rock Properties 301

11.1 Introduction 301

11.2 Granulometric Composition of Rock 301

11.3 Determining the Density of Rocks 302

11.3.1 Methods of Liquid Weighing 303

11.3.2 Porosimeter Method 304

11.3.3 Geometric Method 305

11.3.4 Procedure for Determination of the Apparent Density of Rock 306

11.3.5 Procedure for Determination of True Density of Rocks by Pycnometric

Method 308

11.4 Determining the Carbonate Content of Rocks 310

11.4.1 Definition of Carbonate Content 310

11.4.2 Determination of Carbonate Content of Rocks by Gasometric Method

Using the Clark Apparatus 312

11.5 Collector Properties 315

11.5.1 Extraction of Oil-saturated Rock Samples 315

11.6 Porosity Measurements 316

11.6.1 Helium Grain Volume and Grain Density 316

11.6.1.1 Sample Preparation 316

11.6.1.2 Test Equipment 317

11.6.1.3 Test Procedures 318

11.6.1.4 Grain Volume and Grain Density Calculation 319

11.6.2 Helium Pore Volume 320

11.6.2.1 Sample Preparation 320

11.6.2.2 Test Equipment for Helium Pore Volume 320

11.6.2.3 Test Procedures for Helium Pore Volume 321

11.6.2.4 Pore Volume and Porosity Calculation 322

11.6.3 Bulk Volume 322

11.6.3.1 Sample Preparation 324

11.6.3.2 Test EquipmentMercury Pycnometer 324

11.6.3.3 Test ProceduresMercury Pycnometer 326

11.6.3.4 Test EquipmentMercury Immersion System 326

11.6.3.5 Test ProceduresMercury Immersion System 327

11.6.4 Liquid Saturation Porosity 327

11.6.4.1 Sample Preparation 328

11.6.4.2 Test Equipment 329

11.6.4.3 Test Procedures 329

11.6.4.4 Porosity Calculation 330

xii Contents

11.6.4.5 Re-saturation Porosity Quality Control Issues, Checks, and

Diagnostics 330

11.6.5 Accuracy and Repeatability of Porosity Measurements 331

11.7 Wettability and Wettability Tests 332

11.7.1 Contact Angle Method 333

11.7.1.1 Sample Preparation for Sessile Drop Method 334

11.7.1.2 Equipment Setup 334

11.7.1.3 Test Procedures 335

11.7.1.4 Results 336

11.7.1.5 Data Reporting Requirements 337

11.7.1.6 Contact Angle Summary 337

11.7.2 Amott (AmottHarvey) Method 339

11.7.2.1 Sample Preparation 340

11.7.2.2 Test Conditions 342

11.7.2.3 Test Equipment 344

11.7.2.4 Test Procedures 345

11.7.2.5 AmottHarvey Wettability Index Calculation 346

11.7.3 USBM Method 348

11.7.3.1 Sample Preparation 349

11.7.3.2 Test Equipment 349

11.7.3.3 Key Processes 349

11.7.3.4 Test Procedures 350

11.7.3.5 USBM Index Calculation 352

11.7.4 Combined AmottUSBM (Combination) Method 352

11.7.4.1 Sample Preparation 352

11.7.4.2 Test Equipment 354

11.7.4.3 Test Procedures 354

11.7.4.4 USBM and AmottHarvey Index Calculation 355

11.8 Interfacial Tension 356

11.8.1 Methods to Determine IFT 357

11.8.1.1 From Compositional Data 357

11.8.1.2 The Pendant Drop Method 357

11.8.1.3 Force Tensiometry 359

11.8.1.4 Du Noüy Ring 359

11.8.1.5 Wilhelmy Plate 360

11.9 Steady-State Permeability Measurements 361

11.9.1 Sample Preparation 361

11.9.2 Test Equipment 362

11.9.3 Test Procedures 363

11.9.4 Gas Permeability and Klinkenberg Permeability 364

11.9.5 Evaluation of Klinkenberg and Non-Darcy Effects in Steady-State

Flow 364

11.10 Unsteady-state Permeability Measurements 366

11.10.1 Test Equipment 368

11.10.2 Test Procedures and Permeability Calculation 369

ftoc.indd 12 6/17/25 3:11 PM

Contents xiii

11.11 Steady-State Liquid (Absolute) Permeability Measurements 371

11.11.1 Sample Preparation 371

11.11.2 Saturation Procedures 372

11.11.3 Test Procedures and Permeability Calculation 372

12 Economic Assessment of Enhanced Oil Recovery (EOR) 377

12.1 Introduction 377

12.2 Determining the Optimal Time to Start EOR 377

12.3 Technological Efficiency of EOR 378

12.4 Economic Efficiency of EOR 380

12.4.1 Sensitivity to Risks 386

12.4.2 Calculation example 387

Index 393

{| TOC-Start |}

Content

Preface

Introduction

1. Basic Concepts in Reservoir Engineering

1.1. Rocks and Their Types[ CE1] 

1.2. Forms of Occurrence of Sedimentary Rocks[ CE2] 

1.3. Hydrocarbon Reservoirs

1.4. Oil and Gas Traps

1.4.1. Structural Traps

1.4.2.Lithological Traps

1.4.3.Stratigraphic Traps

1.5. Rock Porosity

1.5.1 Primary and Secondary Porosity

1.5.2 Effective and Total Porosity

1.5.3 Diagenesis and Its Impact

1.5.4 Types of Porosity in Reservoir Rocks

1.6. Rock Permeability

1.6.1Types of Permeabilities

1.6.2Klinkenberg Effect

1.7. Geological Heterogeneity of Rocks

1.8.Saturations

1.8.1Saturation Distribution in Reservoirs

1.9.Resistivity

1.10.Capillary Pressure

1.10.1Entry Pressure

1.10.2HysteresisImbibition Versus Drainage

1.10.3Permeability Effects

1.10.4Relative PermeabilityCapillary Pressure Relationship

1.11.Types of Reservoir Fluids

1.11.1Black Oil

1.11.2Volatile Oil

1.11.3Gas Condensate

1.11.4Wet Gas

1.11.5Dry Gas

2. Fluid Flow in Porous Media

2.1. Applications of Darcys Law

2.1.1Radial Flow

2.1.2Permeability of Combination Layers

2.1.3High-velocity Flow

2.1.4Fracture Flow

2.2. Differential Equations for Fluid Flow

2.3. Steady-State Flow

2.4. Basic Solutions of the Constant Terminal Rate Case for Radial Models

2.4.1The Steady State Solution

2.4.2Non-steady State Flow Regimes and Dimensionless Variables

2.4.3Unsteady State Solution

2.4.3.1 General Considerations

2.4.3.2 Hurst and Van Everdingen Solution

2.4.3.3 The Line Source Solution

2.4.3.3.1 Range of Application and Limitations

2.4.3.4 The Skin Factor

2.4.4Semi-steady-state Solution

2.4.4.1 Pressure Drop from Initial Reservoir Pressure

2.4.4.2 Generalized Reservoir Geometry: Flowing Equation under Semi-steady
State Conditions

2.4.5The Application of the CTR Solution in Well Testing

2.5. The Constant Terminal Pressure Solution

2.6. Superposition

2.6.1Effects of Multiple Wells

2.6.2Principle of Superposition and Approximation of VariableRate Pressure
Histories

2.6.3Effects of Rate Changes

2.6.4Simulating Boundary Effects (Image Wells)

2.7. Ideal Gas Flow

2.7.1Streamlines, Isopotentials, and Source/Sink Representation

3. Classification of Hydrocarbons and Oil Reserves

3.1. Common Classification of Hydrocarbons

3.2. Classification of Oil Reserves

3.3. Oil Recovery Factor

3.4. SPE/WPC/AAPG Classification of Reserves

3.5. Russian Classification of Reserves

3.6. The United Nations Framework Classification for Resources (UNFC)

4. Oil Recovery Methods

4.1. Primary Recovery[ CE3] 

4.2. Secondary Recovery

4.2.1. Water Injection

4.2.2. Gas Injection

4.3. Tertiary Recovery

4.4. Conformance Control

5. Thermal Enhanced Oil Recovery (EOR)

5.1. Steam Injection[ CE4] 

5.1.1. Process Mechanism

5.1.2. Applicability Criteria

5.1.3. Field Implementation

5.1.4. Implementation Technology

5.2. In Situ Combustion

5.2.1. Process Mechanism

5.2.2. Applicability Criteria

5.2.3. Field Implementation

5.2.4. Implementation Technology

6. Gas  Flooding

6.1. Injection of Hydrocarbon Gases[ CE5] 

6.1.1. Process Mechanism

6.1.2. Applicability Criteria

6.1.3. Field Implementation

6.1.4. Implementation Technology

6.2. Nitrogen Injection

6.2.1. Process Mechanism

6.2.2. Applicability Criteria

6.2.3. Field Implementation

6.2.4. Implementation Technology

6.3. CO2 Injection

6.3.1. Process Mechanism

6.3.2. Applicability Criteria

6.3.3. Field Implementation

6.3.4. Implementation Technology

6.4. Water Alternating Gas Injection

6.4.1. Process Mechanism

6.4.2. Applicability Criteria

6.4.3. Field Implementation

6.4.4. Implementation Technology

7. Chemical Enhanced Oil Recovery (EOR)

7.1. Polymer Flooding

7.1.1. Process Mechanism

7.1.2. Applicability Criteria

7.1.3. Field implementation

7.1.4. Implementation Technology

7.2. Micellar-polymer Flooding

7.2.1. Process Mechanism

7.2.2. Applicability Criteria

7.2.3. Field Implementation

7.2.4. Implementation Technology

7.3. Alkaline Flooding

7.3.1. Process Mechanism

7.3.2. Applicability Criteria

7.3.3. Field Implementation

7.3.4. Implementation Technology

8. Microbial EOR

8.1. Introduction to Microorganisms in MEOR

8.1.1. Environmental Factors Affecting Microorganisms[ CE6] 

8.1.2. Biosurfactants

8.1.3. Biopolymers

8.1.4. Biofilms

8.1.5. Biogenic Gases

8.1.6. Solvents and Acids

8.2. Process Mechanisms of MEOR

8.3. Applicability Criteria

8.4. Field Implementation

8.5. Implementation Technology

8.6. Overview of Organic Oil Recovery Methods

9. Forefront EOR

9.1. In-depth Fluid Diversion

9.1.1. Injection of Thermoactive Polymers

9.1.1.1Process Mechanism

9.1.1.2Applicability Criteria

9.1.1.3Field Implementations

9.1.1.4Implementation Technology

9.1.2. Injection of Colloidal Dispersed Gels (CDG)

9.1.2.1Process Mechanism

9.1.2.2Applicability Criteria

9.1.2.3Completed Projects

9.1.2.4Implementation Technology

9.1.3. Preformed Particle Gel (PPG) injection

9.1.3.1Process Mechanism

9.1.3.2Applicability Criteria

9.1.3.3Field Implementations

9.1.3.4Implementation Technology

9.2.Injection of Low Salinity Water

9.2.1. Process Mechanism

9.2.2. Applicability Criteria

9.2.3. Field Implementations

9.2.4. Implementation Technology

9.3. High Pressure Air Injection (HPAI)

9.3.1. Process Mechanism

9.3.2. Applicability Criteria

9.3.3. Field Implementations

9.3.4. Implementation Technology

10. Practical Implementation of Enhanced Oil Recovery (EOR)

10.1. Screening Assessment

10.2. Phase Behavior of Reservoir Fluids and Core Analysis

10.2.1 Study of the Phase Behavior of Reservoir Fluids

10.2.2. Core Analysis

10.3. EOR Simulation

10.4. Implementation of EOR

10.5. Technology Readiness Level (TRL)

11. Laboratory Evaluation of Oil-bearing Rock Properties

11.1. Granulometric Composition of Rock

11.2. Determining the Density of Rocks

11.2.1 Methods of Liquid Weighing

11.2.2 Porosimeter Method

11.2.3 Geometric Method

11.2.4 Procedure for Determination of the Apparent Density of Rock

11.2.5 Procedure for Determination of True Density of Rocks by Pycnometric
Method

11.3. Determining the Carbonate Content of Rocks

11.3.1 Definition of Carbonate Content

11.3.2 Determination of Carbonate Content of Rocks by Gasometric Method
Using the Clark Apparatus

11.4. Collector Properties

11.4.1 Extraction of Oil-saturated Rock Samples

11.5. Porosity Measurements

11.5.1. Helium Grain Volume and Grain Density

11.5.1.1Sample Preparation

11.5.1.2Test Equipment

11.5.1.3Test Procedures

11.5.1.4Grain Volume and Grain Density Calculation

11.5.2.Helium Pore Volume

11.5.2.1Sample Preparation

11.5.2.2Test Equipment for Helium Pore Volume

11.5.2.3Test Procedures for Helium Pore Volume

11.5.2.4Pore Volume and Porosity Calculation

11.5.3.Bulk Volume

11.5.3.1Sample Preparation

11.5.3.2Test EquipmentMercury Pycnometer

11.5.3.3Test ProceduresMercury Pycnometer

11.5.3.4Test EquipmentMercury Immersion System

11.5.3.5Test ProceduresMercury Immersion System

11.5.4.Liquid Saturation Porosity

11.5.4.1Sample Preparation

11.5.4.2Test Equipment

11.5.4.3Test Procedures

11.5.4.4Porosity Calculation

11.5.4.5Re-Saturation Porosity Quality Control Issues, Checks, and
Diagnostics

11.5.5.Accuracy and Repeatability of Porosity Measurements

11.6. Wettability and Wettability Tests

11.6.1.Contact Angle Method

11.6.1.1Sample Preparation for Sessile Drop Method

11.6.1.2Equipment Setup

11.6.1.3Test Procedures

11.6.1.4Results

11.6.1.5Data Reporting Requirements

11.6.1.6Contact Angle Summary

11.6.2.Amott (AmottHarvey) Method

11.6.2.1Sample Preparation

11.6.2.2Test Conditions

11.6.2.3Test Equipment

11.6.2.4Test Procedures

11.6.2.5AmottHarvey Wettability Index Calculation

11.6.3.USBM Method

11.6.3.1Sample Preparation

11.6.3.2Test Equipment

11.6.3.3Key Processes

11.6.3.4Test Procedures

11.6.3.5USBM Index Calculation

11.6.4.Combined AmottUSBM (Combination) Method

11.6.4.1Sample Preparation

11.6.4.2Test Equipment

11.6.4.3Test Procedures

11.6.4.4USBM and AmottHarvey Index Calculation

11.7.Interfacial tension

11.7.1.Methods to Determine IFT

11.7.1.1From Compositional Data

11.7.1.2The Pendant Drop Method

11.7.1.3Force Tensiometry

11.7.1.3.1 Du Noüy Ring

11.7.1.3.2 Wilhelmy Plate

11.8. Steady-State Permeability Measurements

12.8.1.Sample Preparation

12.8.2.Test Equipment

12.8.3.Test Procedures

12.8.4.Gas Permeability and Klinkenberg Permeability

12.8.5.Evaluation of Klinkenberg and Non-Darcy Effects in Steady-state Flow

11.9. Unsteady-state Permeability Measurements

12.9.1.Test Equipment

12.9.2.Test Procedures and Permeability Calculation

11.10. Steady-state Liquid (Absolute) Permeability Measurements

12.10.1.Sample Preparation

12.10.2.Saturation Procedures

12.10.3.Test Procedures and Permeability Calculation

12. Economic Assessment of Enhanced Oil Recovery (EOR)

12.1. Determining the Optimal Start Time for EOR

12.2. Technological Efficiency of EOR

12.3. Economic Efficiency of EOR

Index

{| TOC-End |}

 

 [ CE1]COMP: Subheadings are not included.

 [ CE2]COMP: 2.1 Introduction

 [ CE3]COMP: 4.1 Introduction/check heading levels

 [ CE4]COMP: 5.1 Introduction

 [ CE5]COMP: 6.1 Introduction

 [ CE6]COMP: EOR expanded in all chapters in title except 8 and 9, check
and change both in chapters 8 and 9 and TOC.
Baghir A. Suleimanov, PhD, Deputy Director of the Oil-Gas Scientific Research and Project Institute of SOCAR, Doctor of Technical Sciences, Professor, and Corresponding Member of the Azerbaijan National Academy of Sciences. He delivers lectures and supervises postgraduate and PhD students in the field of petroleum engineering. Prof. Suleimanov is the author of over 200 scientific publications, 2 monographs, 4 textbooks, and holds 118 patents. He has successfully supervised 26 PhD students and 9 Doctors of Sciences. He has been recognized in the list of the worlds top 2% most influential scientists, compiled by Stanford University.

Elchin F. Veliyev, PhD, Manager of the Laboratory of Analytical Researches at the Oil-Gas Scientific Research and Project Institute of SOCAR. Dr. Veliyev lectures and supervises postgraduate and PhD students in petroleum engineering. He is the author of 85 scientific papers, 3 monographs, and 4 textbooks, and holds 6 patents. He has been included in the list of the worlds top 2% most influential scientists, compiled by Stanford University.