Muutke küpsiste eelistusi

Methods of Moments and Semiparametric Econometrics for Limited Dependent Variable Models [Kõva köide]

  • Formaat: Hardback, 308 pages, kõrgus x laius x paksus: 234x156x19 mm, kaal: 594 g, 20 black & white illustrations, 20 black & white line drawings
  • Ilmumisaeg: 04-Apr-1996
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387946268
  • ISBN-13: 9780387946269
Teised raamatud teemal:
  • Kõva köide
  • Hind: 119,35 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Methods of Moments and Semiparametric Econometrics for Limited Dependent  Variable Models
  • Formaat: Hardback, 308 pages, kõrgus x laius x paksus: 234x156x19 mm, kaal: 594 g, 20 black & white illustrations, 20 black & white line drawings
  • Ilmumisaeg: 04-Apr-1996
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387946268
  • ISBN-13: 9780387946269
Teised raamatud teemal:
The classical econometric approach to modelling has been to specify a model up to a finite-dimensional parameter vector, and estimation and testing techniques have been widely used on these finite-dimensional parameter spaces. In the last fifteen years or so however, new methods have been developed to allow more flexible models which utilise infinite-dimensional parameters. Simultaneously, methods of moments estimation have also become more widely used and applied. In this book, the author provides a survey of these modern techniques and how they are applied to limited dependent variable (LDV) models. As well as covering many classical approaches, the topics covered include: instrumental variable estimation, the generalized method of moments, extremum estimators, methods of simulated moments, minimum distance estimation, nonparametric density and regression function estimation, and semiparametric methods for LDV. As a result, many graduate students and research workers will appreciate this up-to-date account. There is an appendix that describes the use of the software package GAUSS to implement these methods in conjunction with some real data sets.