Muutke küpsiste eelistusi

Metrology and Instrumentation: Practical Applications for Engineering and Manufacturing [Kõva köide]

  • Formaat: Hardback, 400 pages, kõrgus x laius x paksus: 259x185x33 mm, kaal: 953 g
  • Sari: Wiley-ASME Press Series
  • Ilmumisaeg: 21-Dec-2021
  • Kirjastus: Wiley-ASME Press
  • ISBN-10: 1119721733
  • ISBN-13: 9781119721734
Teised raamatud teemal:
  • Formaat: Hardback, 400 pages, kõrgus x laius x paksus: 259x185x33 mm, kaal: 953 g
  • Sari: Wiley-ASME Press Series
  • Ilmumisaeg: 21-Dec-2021
  • Kirjastus: Wiley-ASME Press
  • ISBN-10: 1119721733
  • ISBN-13: 9781119721734
Teised raamatud teemal:
"Metrology is the science and study of providing accurate measurements. It has relevance to mechanical, industrial, electrical, and quality engineering and is a foundational concept for the manufacturing industry, where the accurate calibration of measurements can have direct impact on a product's end quality and production cost. While metrology has historical roots that date back to the late-18th century, its modern applications remain relevant to the Industry 4.0 technologies of today."--

Metrology and Instrumentation: Practical Applications for Engineering and Manufacturing provides students and professionals with an accessible foundation in the metrology techniques, instruments, and governing standards used in mechanical engineering and manufacturing. The book opens with an overview of metrology units and scale, then moves on to explain topics such as sources of error, calibration systems, uncertainty, and dimensional, mechanical, and thermodynamic measurement systems. A chapter on tolerance stack-ups covers GD&T, ASME Y14.5-2018, and the ISO standard for general tolerances, while a chapter on digital measurements connects metrology to newer, Industry 4.0 applications.
Preface xiii
Acknowledgments xv
About the Author xvii
1 Fundamental Units and Constants in Metrology 1(12)
1.1 Introduction
1(5)
1.2 Current Definitions of the Main SI Units
6(1)
1.3 New Definition of Seven Base Units of the SI
6(1)
1.4 Derived International System (SI) Units
7(1)
1.5 SI Conversion
7(1)
1.6 Fundamental Constants
8(1)
1.7 Common Measurements
9(1)
1.8 Principles and Practices of Traceability
10(2)
1.8.1 Definition of Traceability
10(1)
1.8.2 Accreditation and Conformity Assessment
11(1)
Multiple Choice Questions of this
Chapter
12(1)
References
12(1)
2 Scales of Metrology 13(26)
2.1 Introduction to Practical Metrology across All Scales
13(1)
2.2 Nanometrology
14(4)
2.2.1 Introduction and Need in Industry
14(1)
2.2.2 Definition of Nanometrology
15(1)
2.2.3 Importance of Nanometrology in Science and Technology
15(3)
2.3 Standards
18(4)
2.4 Micrometrology
22(1)
2.4.1 Introduction and Need in Industry
22(1)
2.4.2 Definition of Micrometrology
22(1)
2.4.3 Examples of Micrometrology of Microparts
22(1)
2.5 Macroscale Metrology
23(6)
2.5.1 Standards
25(4)
2.6 Large-Scale Metrology and Large-Volume Metrology
29(5)
2.6.1 Introduction and Need in Industry
29(1)
2.6.2 Definition
30(2)
2.6.3 Verification Standards
32(2)
2.7 Instruments Techniques
34(3)
2.7.1 Large Coordinate Measuring Machines
35(1)
2.7.2 Laser Trackers
35(1)
2.7.3 Theodolite
35(2)
Multiple Choice Questions of this
Chapter
37(1)
References
37(2)
3 Applied Math and Statistics 39(22)
3.1 Introduction
39(1)
3.2 Scientific and Engineering Notation
39(1)
3.3 Imperial/Metric Conversions
40(1)
3.4 Ratio
41(1)
3.5 Linear Interpolation
42(1)
3.6 Number Bases
42(1)
3.7 Significant Figures, Rounding, and Truncation
43(1)
3.8 Geometry and Volumes
44(1)
3.8.1 Perimeter
44(1)
3.8.2 Volume and Area
44(1)
3.9 Angular Conversions
44(1)
3.10 Graphs and Plots
45(2)
3.11 Statistical Analysis and Common Distributions
47(5)
3.11.1 Definition of Measurement Data
47(1)
3.11.2 Statistical Measurements
47(1)
3.11.3 Statistical Analysis of Measurements
47(1)
3.11.4 Probability
48(1)
3.11.5 Sample and Population
49(1)
3.11.6 Formulation of Mean and Variance for Direct Measurements
49(1)
3.11.7 Mean and Variance Based on Samples
50(1)
3.11.8 The Standard Deviation of the Mean
51(1)
3.12 Formulation of the Standard Uncertainty and Average of Indirect Measurements
52(8)
3.12.1 How to Determine the Measured Value and Random Error?
52(1)
3.12.2 Repeated Measurements of One Single Quantity
52(1)
3.12.3 Normal Distribution
53(2)
3.12.4 Student's t-distribution
55(5)
Multiple Choice Questions of this
Chapter
60(1)
4 Errors and their Sources 61(38)
Introduction
61(1)
4.1 Definition of the Error and Their Types
61(2)
4.1.1 Systematic Errors
62(1)
4.1.2 Random Errors
63(1)
4.1.3 Components of Motion Error Assessment
63(1)
4.2 Measurement Characteristics
63(6)
4.2.1 Characterization of the Measurement
63(1)
4.2.2 Resolution, Error Uncertainty, and Repeatability
64(3)
4.2.3 Model of Measurement
67(2)
4.3 Propagation of Errors
69(4)
4.4 Sources of Errors
73(4)
4.4.1 Static Errors and Dynamic Errors
73(4)
4.5 Error Budget
77(2)
4.5.1 Components of the Error Budget
77(1)
4.5.2 Example of Error-Budget Table
78(1)
4.6 Error Elimination Techniques
79(2)
4.6.1 Methods
79(2)
4.7 Model of Errors in CNC Using HTM
81(6)
4.8 Case Study of Errors Budget
87(9)
4.8.1 Description of the Designed System
87(1)
4.8.2 Error Modeling and Experimental Testing
88(8)
4.9 Solved Problems
96(1)
Multiple Choice Questions of this
Chapter
97(1)
References
97(2)
5 Measurement and Measurement Systems 99(50)
5.1 Introduction
99(2)
5.2 What Can Be Standard in a Measurement?
101(1)
5.3 Definitions of Key Measurement Components
102(1)
5.3.1 Measurement System
102(1)
5.3.2 Measurement System Analysis
103(1)
5.3.3 Measurement Process
103(1)
5.4 Physical Measurement Process (PMP)
103(1)
5.5 Difference between Number and an Analysis Model
104(1)
5.6 Measurement Methods
105(4)
5.6.1 Metrology and Measurement
105(3)
5.6.2 Metrological Characteristics of Measuring Instruments
108(1)
5.7 Instrumentation for Measurement
109(1)
5.7.1 Background
109(1)
5.7.2 Measurement Instrumentations
109(1)
5.7.3 Digital Measuring Device Fundamentals
109(1)
5.8 Non-Portable Dimensional Measuring Devices
110(30)
5.8.1 Laser Interferometry, Application to CNC Machines
110(8)
5.8.2 Coordinate Measuring Machine (CMM)
118(22)
5.9 Metrology Laboratory Test for Students
140(6)
Multiple Choice Questions of this
Chapter
146(1)
References
146(3)
6 Tolerance Stack-Up Analysis 149(42)
6.1 Introduction
149(7)
6.1.1 Importance of Tolerance Stack-Up Analysis
149(2)
6.1.2 Need for Tolerance Stack-Up Analysis in Assemblies
151(1)
6.1.3 Manufacturing Considerations in Engineering Design
151(1)
6.1.4 Technical Drawing
152(1)
6.1.5 Definitions, Format, and Workflow of Tolerance Stack-Up
153(3)
6.2 Brief Introduction to Geometric Dimensioning and Tolerancing (GD&T)
156(8)
6.2.1 Notation and Problem Formulation
156(1)
6.2.2 Dimension Types
157(1)
6.2.3 Coordinate Dimensioning
158(2)
6.2.4 Tolerance Types
160(2)
6.2.5 Characteristics of Features and Their Tolerances
162(2)
6.3 Tolerance Format and Decimal Places
164(1)
6.4 Converting Plus/Minus Dimensions and Tolerances into Equal-Bilaterally Toleranced Dimensions
165(2)
6.5 Tolerance Stack Analysis
167(6)
6.5.1 Worst-Case Tolerance Analysis
169(1)
6.5.2 Rules for Assembly Shift
169(2)
6.5.3 Worst-Case Tolerance Stack-Up in Symmetric Dimensional Tolerance
171(2)
6.5.4 Worst-Case Tolerance Stack-Up in Asymmetric Dimensional Tolerance
173(1)
6.6 Statistical Tolerance Analysis
173(15)
6.6.1 Definition of Statistical Tolerance Analysis
173(2)
6.6.2 Worst-Case Analysis vs RSS (Root-Sum Squared) Statistical Analysis
175(1)
6.6.3 Second-Order Tolerance Analysis
176(1)
6.6.4 Cases Discussions
176(2)
6.6.5 Understanding Material Condition Modifiers
178(10)
Appendix A from ISO and ASME Y14 Symbols
188(1)
Multiple Choice Questions of this
Chapter
189(1)
References
189(2)
7 Instrument Calibration Methods 191(46)
7.1 Introduction
191(1)
7.2 Definition of Calibration
191(1)
7.3 Need for Calibration
192(1)
7.4 Characteristics of Calibration
193(2)
7.5 Calibration Overall Requirements and Procedures
195(2)
7.5.1 Calibration Methods/Procedures
195(2)
7.6 Calibration Laboratory Requirements
197(1)
7.7 Industry Practices and Regulations
198(1)
7.8 Calibration and Limitations of a Digital System
199(2)
7.9 Verification and Calibration of CNC Machine Tool
201(1)
7.10 Inspection of the Positioning Accuracy of CNC Machine Tools
202(5)
7.11 CNC Machine Error Assessment and Calibration
207(12)
7.12 Assessment of the Contouring in the CNC Machine Using a Kinematic Ballbar System
219(2)
7.13 Calibration of 3-axis CNC Machine Tool
221(4)
7.14 Calibration of a Coordinate Measuring Machine (CMM)
225(6)
7.14.1 CMM Performance Verification
225(1)
7.14.2 Accreditation of Calibration Laboratories
226(5)
Section 1: Scope and Description
231(1)
Section 2: Calibration Requirements
232(1)
Section 3: Preliminary Operations
232(1)
Section 4: Calibration Process
233(1)
Section 5: Data Analysis
234(1)
Section 6: Calibration Report
234(1)
Multiple Choice Questions of this
Chapter
235(1)
References
235(2)
8 Uncertainty in Measurements 237(18)
8.1 Introduction and Background
237(1)
8.2 Uncertainty of Measurement
238(1)
8.3 Measurement Error
238(1)
8.4 Why Is Uncertainty of Measurement Important?
239(1)
8.5 Components and Sources of Uncertainty
239(2)
8.5.1 What Causes Uncertainty?
239(1)
8.5.2 Uncertainty Budget Components
240(1)
8.5.3 The Errors Affecting Accuracy
240(1)
8.6 Static Errors and Dynamic Errors
241(1)
8.7 Types of Uncertainty
241(1)
8.8 Uncertainty Evaluations and Analysis
242(1)
8.9 Uncertainty Reporting
243(2)
8.10 How to Report Uncertainty
245(2)
8.11 Fractional Uncertainty Revisited
247(1)
8.12 Propagation of Uncertainty
247(5)
Multiple Choice Questions of this
Chapter
252(1)
References
252(3)
9 Dimensional Measurements and Calibration 255(38)
9.1 Length Measurement
255(1)
9.2 Displacement Measurement
255(5)
9.3 Manual Instruments
260(9)
9.3.1 Caliper
260(1)
9.3.2 Vernier Caliper
261(1)
9.3.3 Micrometer
262(1)
9.3.4 Feeler Gauge
262(1)
9.3.5 Liner Measurement Tool
263(1)
9.3.6 American Wire Gauge
263(1)
9.3.7 Bore Gauge
263(1)
9.3.8 Telescopic Feeler Gauge
264(1)
9.3.9 Depth Gauge
265(1)
9.3.10 Angle Plate or Tool
265(1)
9.3.11 Flat Plate
266(1)
9.3.12 Dial Gauge
266(1)
9.3.13 Oil Gauging Tapes
267(1)
9.3.14 Thread Measurement
267(1)
9.3.15 Planimeter
267(2)
9.4 Diameter and Roundness
269(7)
9.4.1 How to Measure a Diameter?
269(1)
9.4.2 Roundness
270(6)
9.5 Angular Measurements
276(6)
9.5.1 Line Standard Angular Measuring Devices
277(1)
9.5.2 Face Standard Angular Measuring Devices
277(2)
9.5.3 Measurement of Inclines
279(1)
9.5.4 Optical Instruments for Angular Measurement
280(2)
9.6 Metrology for Complex Geometric Features
282(3)
9.6.1 Edge Detection Techniques Using a CCD Camera
282(1)
9.6.2 Full Laser Scanning for Reverse Engineering
283(2)
9.7 Measurement Surface Texture
285(6)
9.7.1 Geometry of Surface
285(1)
9.7.2 Surface Integrity
286(1)
9.7.3 Specification of Surfaces
286(1)
9.7.4 Sampling Length
287(3)
9.7.5 Instruments and Measurement of Roughness
290(1)
Multiple Choice Questions of this
Chapter
291(1)
References
291(2)
10 Mechanical Measurements and Calibration 293(16)
10.1 Importance of Mechanical Measurements
293(1)
10.2 Mechanical Measurements and Calibration
293(1)
10.3 Description of Mechanical Instruments
294(6)
10.3.1 Mass Measurements
294(1)
10.3.2 Force Measurements
295(1)
10.3.3 Vibration Measurements
295(1)
10.3.4 Volume and Density
296(2)
10.3.5 Hydrometers
298(1)
10.3.6 Acoustic Measurements
298(2)
10.4 Calibration of Mechanical Instruments
300(1)
10.4.1 When Is Equipment Calibration Needed?
300(1)
10.4.2 When Is There No Need for Calibration?
301(1)
10.4.3 Process of Equipment Calibration
301(1)
10.5 Equipment Validation for Measurement
301(2)
10.5.1 Is There a Need of Equipment Validation?
302(1)
10.5.2 Features and Benefits of Validation
302(1)
10.5.3 Process of Validation of Equipment
302(1)
10.6 Difference between Calibration and Validation of Equipment
303(1)
10.7 Difference between Calibration and Verification
303(1)
10.8 Calibration of Each Instrument
304(4)
10.8.1 Mass Calibration
304(1)
10.8.2 Force Calibration
304(1)
10.8.3 Pressure Calibration
304(2)
10.8.4 Vibration Measurements
306(1)
10.8.5 Volume and Density
307(1)
10.8.6 Hydrometers
308(1)
10.8.7 Acoustic Measurements
308(1)
Multiple Choice Questions of this
Chapter
308(1)
References
308(1)
11 Thermodynamic Measurements 309(22)
11.1 Background
309(1)
11.2 Scale of Temperature
309(3)
11.2.1 Ideal Gas Law
310(1)
11.2.2 Vacuum
310(1)
11.2.3 Gas Constants
310(2)
11.3 Power
312(1)
11.4 Enthalpy
312(1)
11.5 Humidity Measurements
312(1)
11.6 Methods of Measuring Temperature
313(1)
11.7 Temperature Measured through Thermal Expansion Materials
314(7)
11.7.1 Liquid-in-Glass Thermometer
314(1)
11.7.2 Bimetallic Thermometer
314(1)
11.7.3 Electrical Resistance Thermometry
315(1)
11.7.4 Resistance Temperature Detectors
316(2)
11.7.5 Examples for Discussion
318(2)
11.7.6 Thermistors
320(1)
11.8 Thermoelectric Temperature Measurement or Thermocouples
321(2)
11.8.1 Basic Thermocouples
321(1)
11.8.2 Fundamental Thermocouple Laws
322(1)
11.9 Thermocouple Materials
323(3)
11.9.1 Advantages and Disadvantages of Thermocouple Materials
324(1)
11.9.2 Thermocouple Voltage Measurement
325(1)
11.10 Multi-Junction Thermocouple Circuits
326(1)
11.11 Thermopiles
327(1)
11.12 Radiative Temperature Measurement
327(2)
Multiple Choice Questions of this
Chapter
329(1)
References
329(2)
12 Quality Systems and Standards 331(10)
12.1 Introduction to Quality Management
331(1)
12.2 Quality Management
332(2)
12.2.1 Total Quality Management (TQM)
332(1)
12.2.2 Quality Management System (QMS)
333(1)
12.2.3 TQM Is Essential to Complete TQS
333(1)
12.2.4 ISO-Based QMS Certification
333(1)
12.3 Components of Quality Management
334(2)
12.3.1 Quality System (QS)
334(1)
12.3.2 Quality Assurance (QA)
335(1)
12.3.3 Quality Control (QC)
335(1)
12.3.4 Quality Assessment
335(1)
12.4 System Components
336(2)
12.4.1 Quality Audits
336(1)
12.4.2 Preventive and Corrective Action
336(1)
12.4.3 Occupational Safety Requirements
337(1)
12.4.4 Housekeeping Practices
338(1)
12.5 Quality Standards and Guides
338(1)
Multiple Choice Questions of this
Chapter
339(1)
References
340(1)
13 Digital Metrology Setups and Industry Revolution 14.0 341(16)
13.1 Introduction
341(2)
13.1.1 What Is a Digital Measurement?
341(1)
13.1.2 Metrology and Digitalization
341(2)
13.1.3 Implementation Strategy
343(1)
13.2 Data Acquisition
343(1)
13.3 Setup Fundamentals for Measurement and Data Acquisition
344(8)
13.3.1 Length Measurement in Open Loop
344(1)
13.3.2 Thermal Measurement and Data-Acquisition Considerations
345(4)
13.3.3 Data Transfer to Cloud
349(1)
13.3.4 Internet of Things (IoT) Metrology
349(1)
13.3.5 Closed-Loop Data Analysis- (In-Process Inspection)
350(2)
13.4 Digital Twin Metrology Inspection
352(2)
Multiple Choice Questions of this
Chapter
354(1)
References
354(3)
Index 357
Samir Mekid, PhD, is Professor of Mechanical Engineering and Founding Director of the Interdisciplinary Research Center for Intelligent Manufacturing and Robotics at King Fahd University of Petroleum and Minerals in Saudi Arabia. He has worked as a design engineer with Caterpillar and is a Chartered Engineer registered with IMechE.