Muutke küpsiste eelistusi

Microdynamics Simulation 2008 [Multiple-component retail product]

Edited by , Edited by , Edited by
  • Formaat: Multiple-component retail product, 405 pages, kõrgus x laius: 235x155 mm, kaal: 805 g, XXI, 405 p. With CD-ROM., 1 Item
  • Sari: Lecture Notes in Earth Sciences 106
  • Ilmumisaeg: 21-Nov-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540255222
  • ISBN-13: 9783540255222
Teised raamatud teemal:
  • Multiple-component retail product
  • Hind: 187,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 220,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Multiple-component retail product, 405 pages, kõrgus x laius: 235x155 mm, kaal: 805 g, XXI, 405 p. With CD-ROM., 1 Item
  • Sari: Lecture Notes in Earth Sciences 106
  • Ilmumisaeg: 21-Nov-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540255222
  • ISBN-13: 9783540255222
Teised raamatud teemal:
Microstructures in rocks contain a wealth of information on the history of rock bodes, metamorphic and tectonic processes and the mechanical and rheological properties of the crust and mantle. The book deals with the numerical simulation of such microstructures in rocks. It starts with a general introduction of existing methods and techniques for optical and electron microscopic analysis and measurement of microstructure. The main part of the book contains a number of examples of numerical modelling of processes and microstructures in rocks, using the software package ELLE.

The book is targeted to a readership from the Earth sciences, from the level of MSc students and upwards. Each method presented will have some suggestions for further reading, referring to textbooks and scientific literature. The book will be a useful resource for lectures and numerical practicals on rheology, microscopy, petrology, structural geology, etc. It should be the starting package for students and researchers of the earth science community interested in numerical modelling of microstructures and anyone intending to work with ELLE.

Arvustused

From the reviews:

"This book constitutes a detailed introduction to a simulation problem with special reference to earth sciences. In addition, it introduces the modeling package known as Elle that has been specifically designed by a community of scientists dealing with microdynamics of rock transformations to simulate grain scale processes. Without a doubt, the book can be recommended for researchers in the field of mathematical modeling of rock forming processes, teachers and advanced-level students of tectonics, petrology and geotechnical engineering who are interested in mathematical geology." (Yuri Gulbin, Mathematical Geosciences, Vol. 41, 2009)

Contributing authors XVII
Acknowledgements XXI
1 Introduction 1
Paul D. Bons, Mark W. Jessell and Daniel Koehn
1.1 Historical background
4
1.1.1 Simulation of lattice-preferred orientations
5
1.1.2 Simulation of crystal growth in veins
8
1.1.3 Simulation of rigid objects
8
1.2 Why numerical simulation of microstructures?
9
1.3 Time and length scaling, resolution
11
1.4 Numerical opportunities and challenges
12
2 Numerical methods 15
Paul D. Bons, Daniel Koehn and Mark W. Jessell
2.1 Introduction
15
2.1.1 Data Structure
15
2.1.2 Variables and parameters
18
2.1.3 Equations
18
2.1.4 Boundary conditions
19
2.2 Lattice data structures: Monte Carlo, Ising, Potts, etc.
20
2.2.1 Introduction to Monte Carlo Principle
20
2.2.2 The Ising model
21
2.2.3 Potts models
25
2.2.4 Cellular Automata
27
2.2.5 Lattice-Gas and Lattice-Boltzmann method
28
2.3 Boundary models
33
2.4 Finite Difference method
37
2.4.1 Principles
37
2.4.2 Explicit Finite Difference method
39
2.4.3 Implicit Finite Difference method
45
2.4.4 The Crank-Nicholson scheme
47
2.4.5 Final remarks on the Finite Difference method
47
2.5 Finite Element method
50
2.6 Phase Field modelling
54
2.7 Molecular and Dislocation Dynamics
57
2.7.1 Molecular Dynamics
57
2.7.2 Modelling of dislocations
59
2.8 Lattice-Spring models
64
2.8.1 Normal Force model
65
2.8.2 Normal and Angular Force models
66
2.8.3 Elastic Beam models
68
2.8.4 Discrete Element models with contact forces
69
2.8.5 Fracturing or failure
71
3 Microprocess Simulations 75
Daniel Koehn, Mark W. Jessell and Paul D. Bons
3.1 Introduction to Elle
77
Lynn Evans, Mark W. Jessell, Paul D. Bons and Daniel Koehn
3.1.1 The Elle Project
77
3.1.2 The Elle Data Structure
78
3.1.3 Base Libraries
83
3.1.4 Precompiled Binaries
84
3.1.5 The Elle Data File
84
3.1.6 Experiment Scripts
84
3.1.7 Microprocess Simulation
85
3.2 Garnet - biotite cation exchange
87
Youngdo Park, Lynn Evans, Dal Park and Jin-Han Ree
3.2.1 Phenomenological observation
87
3.2.2 Natural example
87
3.2.3 Inferred processes
89
3.2.4 Driving forces, controls and governing equations
89
3.2.5 Possible and actual simulation techniques
90
3.2.6 Implementation in Elle
92
3.2.7 Example Elle Run: garnet-biotite cation exchange
94
3.3 Subgrain growth Potts model
97
Sandra Piazolo and Mark W. Jessell
3.3.1 Phenomenological observations
97
3.3.2 Natural examples and experiments
97
3.3.3 Inferred processes
99
3.3.4 Driving forces, controls and governing equations
99
3.3.5 Possible and actual simulation techniques
100
3.3.6 Implementation in Elle
100
3.3.7 Example Elle Runs
101
3.4 Nucleation and subgrain formation
105
Sandra Piazolo and Mark W. Jessell
3.4.1 Phenomenological observations
105
3.4.2 Natural examples
106
3.4.3 Inferred processes
108
3.4.4 Driving forces, controls and governing equations
109
3.4.5 Possible and actual simulation techniques
110
3.4.6 Implementation in Elle
111
3.4.7 Example Elle Run
112
3.5 Grain boundary migration
115
Paul D. Bons, Mark W. Jessell and Jens Becker
3.5.1 Phenomenological observations
115
3.5.2 Natural examples
115
3.5.3 Inferred processes
116
3.5.4 Driving forces, controls and governing equations
117
3.5.5 Possible and actual simulation techniques
117
3.5.6 Implementation in Elle
118
3.5.7 Example Elle Run: Grain growth
123
3.5.8 Alternative implementations in Elle
125
3.6 Vein microstructures
127
Paul D. Bons and Daniel Koehn
3.6.1 Phenomenological Observations
127
3.6.2 Modeling of vein microstructures
128
3.7 Melt processes during grain growth
133
Jens Becker and Paul D. Bons
3.7.1 Phenomenological observations
133
3.7.2 Natural examples
133
3.7.3 Analogue modeling
134
3.7.4 Driving forces
134
3.7.5 Possible and actual techniques
135
3.7.6 Implementation in Elle
135
3.7.7 Example in Elle
136
3.8 Basil: stress and deformation in a viscous material
139
Greg Houseman, Terence Barr and Lynn Evans
3.8.1 Introduction
139
3.8.2 Formulation and assumptions
141
3.8.3 Numerical method
143
3.8.4 Porphyroblast example solution
147
3.8.5 Implementation in Elle: Growth and deformation of a porphyroblast
149
3.8.6 Conclusions
153
3.9 A hybrid FEM/Taylor Bishop Hill method
155
Mark W. Jessell
3.9.1 Introduction
155
3.9.2 Models of Lattice Rotation during Deformation
156
3.9.3 Implementation in Elle
158
3.9.4 Example Elle Run
159
3.10 Diffusion creep
161
John Wheeler and Judy Ford
3.10.1 Phenomenological observation
161
3.10.2 Natural examples
162
3.10.3 Inferred processes
162
3.10.4 Driving forces, controls and governing equations
162
3.10.5 Possible simulation techniques
166
3.10.6 Implementation in DiffForm
167
3.10.7 Simple example and description of input parameters
167
3.11 Fracturing
171
Daniel Koehn
3.11.1 Phenomenological observations
171
3.11.2 Natural examples
173
3.11.3 Inferred processes
173
3.11.4 Driving forces, controls and governing equations
173
3.11.5 Possible and actual simulation techniques
175
3.11.6 Implementation in Elle
176
3.11.7 Example Elle Runs
178
3.12 Fluid solid reactions
183
Daniel Koehn
3.12.1 Phenomenological observations
183
3.12.2 Natural examples
184
3.12.3 Inferred processes
185
3.12.4 Driving forces, controls and governing equations
185
3.12.5 Possible and actual simulation techniques
187
3.12.6 Implementation in Elle
187
3.12.7 Example Elle Runs
189
3.13 Solid-solid phase transitions and heat conduction
195
Till Sachau and Daniel Koehn
3.13.1 Phenomenological observations
195
3.13.2 Natural examples
196
3.13.3 Driving forces, equations describing the system
197
3.13.4 Possible simulation techniques
199
3.13.5 Implementation in Elle
199
3.13.6 Examples
204
4 Case studies and coupling of processes 207
Mark W. Jessell, Daniel Koehn and Paul D. Bons
4.1 Grain shapes and sizes during static grain coarsening in salt
209
Mark W. Jessell, Janos L. Urai and Oliver Schenk
4.1.1 Anisotropic grain growth
209
4.1.2 Implementation in Elle
210
4.1.3 Discussion
213
4.1.4 Conclusions
214
4.2 Dynamic recrystallisation and crystalline plasticity
215
Sandra Piazolo
4.2.1 Introduction
215
4.2.2 Theoretical background and implementation in Elle
215
4.2.3 Experimental Runs
220
4.2.4 Results
220
4.2.5 Discussion
223
4.2.6 Discussion of technique
223
4.2.7 Conclusions
224
4.3 Localisation of deformation
225
Mark W. Jessell, Esteban Siebert, Paul D. Bons, Lynn Evans and Sandra Piazolo
4.3.1 Introduction
225
4.3.2 Implementation in Elle
225
4.3.3 Experimental Results
227
4.3.4 Conclusions
230
4.4 Reactions and fracturing
231
Daniel Koehn
4.4.1 Overview of phenomenon
231
4.4.2 Implementation in Elle
232
4.4.3 Experimental runs
232
4.5 Combined phase transition and heat diffusion
237
Till Sachau and Daniel Koehn
4.5.1 Introduction
237
4.5.2 Implementation
238
4.5.3 Example runs
238
4.6 Visco-elastic and brittle deformation
241
Daniel Koehn and Till Sachau
4.6.1 Overview of phenomenon
241
4.6.2 Implementation in Elle
242
4.6.3 Experimental runs
244
4.7 Strain localisation and rigid-object kinematics
247
Scott E. Johnson
4.7.1 Introduction
247
4.7.2 Numerical experiments
249
4.7.3 Results
251
4.7.4 Discussion
252
4.8 Transient strain-rate partitioning during porphyroblast growth
255
Wesley G. Groome and Scott E. Johnson
4.8.1 Overview
255
4.8.2 Theoretical background and natural example
255
4.8.3 Implementation in Elle
257
4.8.4 Experiments and discussion
259
4.8.5 Conclusions
264
References 267
Appendices 291
Appendix A Installing Elle
293
Mark W. Jessell
A.1 Windows
293
A.1.1. Installing Basil and Sybil
294
A.2 Linux
294
A.2.1. Installing Basil and Sybil
295
Appendix B Example experiments
297
Mark W. Jessell
The Experiment Launcher
297
Experiment 1 Diffusion
299
Experiment 2 Fluid flow in a porous medium
301
Experiment 3 Crystal growth from melt
302
Experiment 4 Fracturing in granular aggregates
304
Experiment 5 Cation exchange reactions
307
Experiment 6 Subgrain growth
309
Experiment 7 Grain growth
311
Experiment 8 Evolution of a partial melt
313
Experiment 9 Rigid porphyroblast growing in a deforming matrix
314
Experiment 10 Lattice rotations
317
Experiment 11 Boudinage
321
Experiment 12 Dissolution grooves
323
Experiment 13 Stylolites
325
Experiment 14 Strain-rate partitioning during porphyroblasts growth
327
Experiment 15 Anisotropic grain growth
330
Experiment 16 Dynamic recrystallisation
332
Experiment 17 Deformation localisation
335
Experiment 18 Expanding inclusions
338
Experiment 19 Mud cracks
340
Experiment 20 Visco-elastic deformation and fractures
342
Experiment 21 Strain localization and rigid object kinematics
345
Appendix C The Elle graphical user interface
349
Jens Becker
C.1 Introduction
349
C.2 The status bar
350
C.3 The menu-bar
350
C.3.1 The File Menu
350
C.3.2 The Run Menu
351
C.3.3 The Graphics Menu
351
C.3.4 The Data Menu
351
C.3.5 The Help Menu
351
C.4 The Run Options dialog
351
C.5 The Preferences Window
353
C.5.1 Flynn Preferences
353
C.5.2 Boundaries Preferences
354
C.5.3 Bnode Preferences
354
C.5.4 Unode Preferences
355
C.5.5 The colour map
356
C.6 The zooming window
357
C.7 The data-windows
358
Appendix D Different ways to run an Elle experiment
361
Mark W. Jessell
D.1 Via the Experiment Launcher
361
D.2 Direct launching of experiments
362
D.3 Developer mode (Windows and Linux)
362
Appendix E How to create multiple-process experiments
365
Lynn Evans
E.1 Shelle scripts/batch scripts
365
E.2 Shelle: An Elle Shell Script Generator (v 1.24)
366
E.2.1 How to use the Shelle Script Generator
366
E.2.2 Notes on the Shelle Script
369
E.2.3 Debugging Shell Scripts
370
Appendix F Sybil - The Basil post-processor
371
Lynn Evans, Terence Barr and Greg Houseman
F.1 Introduction
371
F.2 Menu Options
372
F.2.1 File
372
F.2.2 Record
372
F.2.3 XYPlot
373
F.2.4 Profile
373
F.2.5 Arrow
374
F.2.6 Contour
375
F.2.7 Locate
375
F.2.8 Options
376
Appendix G How to use Elle_Latte
379
Till Sachau and Daniel Koehn
G.1 Introduction
379
G.2 The experiment interface for Windows and Linux users
380
G.2.1 Introduction
380
G.2.2 Installation notes
380
G.2.3 The main-window
381
G.2.4 The 'Files' tab
381
G.2.5 The New file and the Edit file window
382
G.2.6 The Statistics window
384
G.2.7 Remaining tabs
385
G.3 The command line interface for Windows and Linux developers
386
Appendix H Miscellaneous processes and utilities
389
Mark Jessell
H.1 Introduction
389
H.2 ellegbdiff
389
H.3 elle_diff
389
H.4 elle_met
389
H.5 elle_recovery
390
H.6 elle_viscosily
390
H.7 elle_expand & elle_pblast
390
H.8 elle_manuel
390
H.9 reposition
390
H.10 tidy
391
H.11 elle2poly, basil2elle, elle2oof, goof2elle
391
H.12 ppm2elle
391
H.13 ebsd2elle, elle2ebsd
392
H.14 plotaxes
392
Appendix I How to Create an Elle file
393
Mark W. Jessell
Appendix J The Elle file format
395
Mark W. Jessell
J.1 Example Elle file
395
J.2 Elle file blocks
397
Index 401