Preface |
|
xix | |
|
PART ONE SOLID STATE ELECTRONIC AND DEVICES |
|
|
|
Introduction to Electronics |
|
|
3 | (38) |
|
A Brief History of Electronics: From Vacuum Tubes to Ultra-Large-Scale Integration |
|
|
5 | (3) |
|
Classification of Electronic Signals |
|
|
8 | (4) |
|
|
9 | (1) |
|
|
9 | (1) |
|
A/D and D/A Converters---Bridging the Analog and Digital Domains |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (2) |
|
Important Concepts from Circuit Theory |
|
|
15 | (6) |
|
Voltage and Current Division |
|
|
15 | (1) |
|
Thevenin and Norton Circuit Representations |
|
|
16 | (5) |
|
Frequency Spectrum of Electronic Signals |
|
|
21 | (1) |
|
|
22 | (4) |
|
Ideal Operational Amplifiers |
|
|
23 | (2) |
|
Amplifier Frequency Response |
|
|
25 | (1) |
|
Element Variations in Circuit Design |
|
|
26 | (8) |
|
Mathematical Modeling of Tolerances |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
29 | (3) |
|
|
32 | (2) |
|
|
34 | (7) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (4) |
|
|
41 | (32) |
|
Solid-State Electronic Materials |
|
|
43 | (1) |
|
|
44 | (3) |
|
Drift Currents and Mobility in Semiconductors |
|
|
47 | (2) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
Resistivity of Intrinsic Silicon |
|
|
49 | (1) |
|
Impurities in Semiconductors |
|
|
50 | (1) |
|
Donor Impurities in Silicon |
|
|
51 | (1) |
|
Acceptor Impurities in Silicon |
|
|
51 | (1) |
|
Electron and Hole Concentrations in Doped Semiconductors |
|
|
51 | (3) |
|
n-Type Material (ND > NA) |
|
|
52 | (1) |
|
p-Type Material (NA < ND) |
|
|
53 | (1) |
|
Mobility and Resistivity in Doped Semiconductors |
|
|
54 | (4) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (3) |
|
Electron--Hole Pair Generation in an Intrinsic Semiconductor |
|
|
60 | (1) |
|
Energy Band Model for a Doped Semiconductor |
|
|
61 | (1) |
|
Compensated Semiconductors |
|
|
61 | (2) |
|
Overview of Integrated Circuit Fabrication |
|
|
63 | (10) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (4) |
|
Solid-State Diodes and Diode Circuits |
|
|
73 | (70) |
|
|
74 | (5) |
|
pn Junction Electrostatics |
|
|
74 | (4) |
|
|
78 | (1) |
|
The i-v Characteristics of the Diode |
|
|
79 | (2) |
|
The Diode Equation: A Mathematical Model for the Diode |
|
|
81 | (3) |
|
Diode Characteristics Under Reverse, Zero, and Forward Bias |
|
|
84 | (4) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (3) |
|
Diode Temperature Coefficient |
|
|
88 | (1) |
|
Diodes Under Reverse Bias |
|
|
88 | (3) |
|
Saturation Current in Real Diodes |
|
|
89 | (1) |
|
|
90 | (1) |
|
Diode Model for the Breakdown Region |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
Diode SPICE Model and Layout |
|
|
93 | (2) |
|
|
95 | (10) |
|
|
95 | (2) |
|
Analysis Using the Mathematical Model for the Diode |
|
|
97 | (4) |
|
|
101 | (2) |
|
Constant Voltage Drop Model |
|
|
103 | (1) |
|
Model Comparison and Discussion |
|
|
104 | (1) |
|
|
105 | (3) |
|
Analysis of Diodes Operating in the Breakdown Region |
|
|
108 | (4) |
|
|
108 | (1) |
|
Analysis with the Piecewise Linear Model |
|
|
109 | (1) |
|
|
109 | (1) |
|
Analysis Including Zener Resistance |
|
|
110 | (1) |
|
|
111 | (1) |
|
Half-Wave Rectifier Circuits |
|
|
112 | (9) |
|
Half-Wave Rectifier with Resistor Load |
|
|
112 | (2) |
|
Rectifier Filter Capacitor |
|
|
114 | (1) |
|
Half-Wave Rectifier with RC Load |
|
|
114 | (1) |
|
Ripple Voltage and Conduction Interval |
|
|
115 | (3) |
|
|
118 | (1) |
|
|
119 | (1) |
|
Peak-Inverse-Voltage (PIV) Rating |
|
|
119 | (1) |
|
|
120 | (1) |
|
Half-Wave Rectifier with Negative Output Voltage |
|
|
120 | (1) |
|
Full-Wave Rectifier Circuits |
|
|
121 | (1) |
|
Full-Wave Rectifier with Negative Output Voltage |
|
|
122 | (1) |
|
Full-Wave Bridge Rectification |
|
|
122 | (1) |
|
Rectifier Comparison and Design Tradeoffs |
|
|
123 | (4) |
|
Dynamic Switching Behavior of the Diode |
|
|
127 | (1) |
|
Photo Diodes, Solar Cells, and Light-Emitting Diodes |
|
|
128 | (15) |
|
Photo Diodes and Photodetectors |
|
|
128 | (1) |
|
Power Generation from Solar Cells |
|
|
129 | (1) |
|
Light-Emitting Diodes (LEDs) |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (10) |
|
|
143 | (64) |
|
Characteristics of the MOS Capacitor |
|
|
144 | (2) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (13) |
|
Qualitative i-v Behavior of the NMOS Transistor |
|
|
147 | (1) |
|
Triode1 Region Characteristics of the NMOS Transistor |
|
|
148 | (3) |
|
|
151 | (1) |
|
Saturation of the i-v Characteristics |
|
|
152 | (1) |
|
Mathematical Model in the Saturation (Pinch-Off) Region |
|
|
153 | (2) |
|
|
155 | (1) |
|
Channel-Length Modulation |
|
|
155 | (1) |
|
Transfer Characteristics and Depletion-Mode MOSFETS |
|
|
156 | (1) |
|
Body Effect or Substrate Sensitivity |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
160 | (3) |
|
MOS Transistor Fabrication and Layout Design Rules2 |
|
|
163 | (2) |
|
Minimum Feature Size and Alignment Tolerance |
|
|
163 | (1) |
|
|
164 | (1) |
|
Capacitances in MOS Transistors |
|
|
165 | (2) |
|
NMOS Transistor Capacitances in the Triode Region |
|
|
166 | (1) |
|
Capacitances in the Saturation Region |
|
|
167 | (1) |
|
|
167 | (1) |
|
|
167 | (2) |
|
Biasing the NMOS Field-Effect Transistor |
|
|
169 | (18) |
|
|
169 | (18) |
|
Biasing the PMOS Field-Effect Transistor |
|
|
187 | (2) |
|
|
189 | (18) |
|
|
189 | (2) |
|
|
191 | (1) |
|
Circuit and Power Densities |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
197 | (10) |
|
Bipolar Junction Transistors |
|
|
207 | (68) |
|
Physical Structure of the Bipolar Transistor |
|
|
208 | (1) |
|
The Transport Model for the npn Transistor |
|
|
209 | (6) |
|
|
210 | (2) |
|
|
212 | (1) |
|
The Complete Transport Model Equations for Arbitrary Bias Conditions |
|
|
213 | (2) |
|
|
215 | (2) |
|
Equivalent Circuit Representations for the Transport Models |
|
|
217 | (1) |
|
The i-v Characteristics of the Bipolar Transistor |
|
|
218 | (2) |
|
|
218 | (1) |
|
|
219 | (1) |
|
The Operating Regions of the Bipolar Transistor |
|
|
220 | (1) |
|
Transport Model Simplifications |
|
|
221 | (14) |
|
Simplified Model for the Cutoff Region |
|
|
221 | (2) |
|
Model Simplifications for the Forward-Active Region |
|
|
223 | (6) |
|
Diodes in Bipolar Integrated Circuits |
|
|
229 | (1) |
|
Simplified Model for the Reverse-Active Region |
|
|
230 | (2) |
|
Modeling Operation in the Saturation Region |
|
|
232 | (3) |
|
Nonideal Behavior of the Bipolar Transistor |
|
|
235 | (7) |
|
Junction Breakdown Voltages |
|
|
236 | (1) |
|
Minority-Carrier Transport in the Base Region |
|
|
236 | (1) |
|
|
237 | (2) |
|
|
239 | (1) |
|
Frequency Dependence of the Common-Emitter Current Gain |
|
|
240 | (1) |
|
The Early Effect and Early Voltage |
|
|
240 | (1) |
|
Modeling the Early Effect |
|
|
241 | (1) |
|
Origin of the Early Effect |
|
|
241 | (1) |
|
|
242 | (1) |
|
Bipolar Technology and SPICE Model |
|
|
243 | (3) |
|
|
243 | (1) |
|
|
244 | (1) |
|
High-Performance Bipolar Transistors |
|
|
245 | (1) |
|
Practical Bias Circuits for the BJT |
|
|
246 | (3) |
|
Four-Resistor Bias Network |
|
|
248 | (1) |
|
Design Objectives for the Four-Resistor Bias Network |
|
|
249 | (5) |
|
Tolerances in Bias Circuits |
|
|
254 | (21) |
|
|
255 | (2) |
|
|
257 | (3) |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
263 | (12) |
|
PART TWO DIGITAL ELECTRONICS |
|
|
|
Introduction to Digital Electronics |
|
|
275 | (77) |
|
|
277 | (1) |
|
Logic Level Definitions and Noise Margins |
|
|
277 | (4) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
280 | (1) |
|
Dynamic Response of Logic Gates |
|
|
281 | (2) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
Review of Boolean Algebra |
|
|
283 | (2) |
|
|
285 | (9) |
|
NMOS Inverter with Resistive Load |
|
|
286 | (1) |
|
Design of the W/L Ratio of MS |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
288 | (2) |
|
On-Resistance of the Switching Device |
|
|
290 | (1) |
|
|
291 | (1) |
|
Calculation of VIL and VOH |
|
|
291 | (1) |
|
Calculation of VIH and VOL |
|
|
292 | (1) |
|
|
293 | (1) |
|
Transistor Alternatives to the Load Resistor |
|
|
294 | (17) |
|
The NMOS Saturated Load Inverter |
|
|
295 | (8) |
|
NMOS Inverter with a Linear Load Device |
|
|
303 | (1) |
|
NMOS Inverter with a Depletion-Mode Load |
|
|
304 | (3) |
|
Static Design of the Pseudo NMOS Inverter |
|
|
307 | (4) |
|
NMOS Inverter Summary and Comparison |
|
|
311 | (1) |
|
|
312 | (4) |
|
|
313 | (1) |
|
|
314 | (1) |
|
NOR and NAND Gate Layouts in NMOS Depletion-Mode Technology |
|
|
315 | (1) |
|
Complex NMOS Logic Design |
|
|
316 | (5) |
|
Selecting Between the Two Designs |
|
|
319 | (2) |
|
|
321 | (4) |
|
|
321 | (1) |
|
Dynamic Power Dissipation |
|
|
322 | (1) |
|
Power Scaling in MOS Logic Gates |
|
|
323 | (2) |
|
Dynamic Behavior of MOS Logic Gates |
|
|
325 | (10) |
|
Capacitances in Logic Circuits |
|
|
325 | (1) |
|
Dynamic Response of the NMOS Inverter with a Resistive Load |
|
|
326 | (5) |
|
|
331 | (1) |
|
A Final Comparison of NMOS Inverter Delays |
|
|
332 | (3) |
|
|
335 | (17) |
|
|
335 | (3) |
|
|
338 | (1) |
|
|
338 | (2) |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
341 | (11) |
|
Complementary MOS (CMOS) Logic Design |
|
|
352 | (46) |
|
|
353 | (2) |
|
|
355 | (1) |
|
Static Characteristics of the CMOS Inverter |
|
|
355 | (5) |
|
CMOS Voltage Transfer Characteristics |
|
|
356 | (2) |
|
Noise Margins for the CMOS Inverter |
|
|
358 | (2) |
|
Dynamic Behavior of the CMOS Inverter |
|
|
360 | (5) |
|
Propagation Delay Estimate |
|
|
360 | (2) |
|
|
362 | (2) |
|
Delay of Cascaded Inverters |
|
|
364 | (1) |
|
Power Dissipation and Power Delay Product in CMOS |
|
|
365 | (2) |
|
|
365 | (1) |
|
Dynamic Power Dissipation |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (5) |
|
|
367 | (3) |
|
|
370 | (2) |
|
Design of Complex Gates in CMOS |
|
|
372 | (4) |
|
Minimum Size Gate Design and Performance |
|
|
376 | (3) |
|
Dynamic Domino CMOS Logic |
|
|
379 | (1) |
|
|
380 | (4) |
|
Cascade Buffer Delay Model |
|
|
381 | (1) |
|
|
381 | (3) |
|
The CMOS Transmission Gate |
|
|
384 | (1) |
|
|
384 | (14) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
389 | (9) |
|
MOS Memory and Storage Circuits |
|
|
398 | (42) |
|
|
399 | (2) |
|
Random Access Memory (RAM) Architecture |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
401 | (7) |
|
Memory Cell Isolation and Access---The 6-T Cell |
|
|
402 | (1) |
|
|
403 | (3) |
|
Writing Data into the 6-T Cell |
|
|
406 | (2) |
|
|
408 | (6) |
|
|
410 | (1) |
|
Data Storage in the 1-T Cell |
|
|
410 | (2) |
|
Reading Data from the 1-T Cell |
|
|
412 | (1) |
|
|
413 | (1) |
|
|
414 | (6) |
|
A Sense Amplifier for the 6-T Cell |
|
|
414 | (2) |
|
A Sense Amplifier for the 1-T Cell |
|
|
416 | (2) |
|
The Boosted Wordline Circuit |
|
|
418 | (1) |
|
Clocked CMOS Sense Amplifiers |
|
|
418 | (2) |
|
|
420 | (4) |
|
|
420 | (1) |
|
|
420 | (2) |
|
Decoders in Domino CMOS Logic |
|
|
422 | (1) |
|
Pass-Transistor Column Decoder |
|
|
422 | (2) |
|
|
424 | (3) |
|
|
427 | (13) |
|
|
429 | (1) |
|
The D-Latch Using Transmission Gates |
|
|
430 | (1) |
|
A Master-Slave D Flip-Flop |
|
|
430 | (1) |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
432 | (1) |
|
|
433 | (7) |
|
|
440 | (65) |
|
The Current Switch (Emitter-Coupled Pair) |
|
|
441 | (3) |
|
Mathematical Model for Static Behavior of the Current Switch |
|
|
442 | (1) |
|
Current Switch Analysis for VI > VREF |
|
|
443 | (1) |
|
Current Switch Analysis for VI < VREF |
|
|
444 | (1) |
|
The Emitter-Coupled Logic (ECL) Gate |
|
|
444 | (3) |
|
|
445 | (1) |
|
|
446 | (1) |
|
Input Current of the ECL Gate |
|
|
446 | (1) |
|
|
446 | (1) |
|
Noise Margin Analysis for the ECL Gate |
|
|
447 | (2) |
|
|
447 | (1) |
|
|
448 | (1) |
|
Current Source Implementation |
|
|
449 | (2) |
|
|
451 | (2) |
|
|
453 | (3) |
|
Emitter Follower with a Load Resistor |
|
|
454 | (2) |
|
``Emitter Dotting'' or ``Wired-OR'' Logic |
|
|
456 | (1) |
|
Parallel Connection of Emitter-Follower Outputs |
|
|
457 | (1) |
|
The Wired-OR Logic Function |
|
|
457 | (1) |
|
ECL Power-Delay Characteristics |
|
|
457 | (4) |
|
|
457 | (2) |
|
|
459 | (1) |
|
|
460 | (1) |
|
The Saturating Bipolar Inverter |
|
|
461 | (8) |
|
Static Inverter Characteristics |
|
|
464 | (1) |
|
Saturation Voltage of the Bipolar Transistor |
|
|
464 | (2) |
|
|
466 | (1) |
|
Switching Characteristics of the Saturated BJT |
|
|
467 | (2) |
|
A Transistor-Transistor Logic (TTL) Prototype |
|
|
469 | (8) |
|
|
470 | (1) |
|
|
471 | (1) |
|
Power in the Prototype TTL Gate |
|
|
471 | (1) |
|
VIH, VIL, and Noise Margins for the TTL Prototype |
|
|
472 | (2) |
|
Prototype Inverter Summary |
|
|
474 | (1) |
|
Fanout Limitations of the TTL Prototype |
|
|
474 | (3) |
|
The Standard 7400 Series TTL Inverter |
|
|
477 | (5) |
|
|
478 | (1) |
|
|
479 | (1) |
|
|
480 | (1) |
|
TTL Propagation Delay and Power-Delay Product |
|
|
480 | (1) |
|
TTL Voltage Transfer Characteristic and Noise Margins |
|
|
481 | (1) |
|
Fanout Limitations of Standard TTL |
|
|
481 | (1) |
|
|
482 | (2) |
|
Multi-Emitter Input Transistors |
|
|
482 | (1) |
|
|
482 | (1) |
|
|
483 | (1) |
|
|
484 | (1) |
|
Comparison of the Power-Delay Products of ECL and TTL |
|
|
485 | (1) |
|
|
486 | (19) |
|
|
487 | (1) |
|
|
488 | (2) |
|
|
490 | (1) |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
493 | (1) |
|
|
493 | (1) |
|
|
493 | (12) |
|
PART THREE ANALOG CIRCUIT DESIGN |
|
|
|
|
505 | (36) |
|
An Example of an Analog Electronic System |
|
|
506 | (1) |
|
|
507 | (3) |
|
|
508 | (1) |
|
|
508 | (1) |
|
|
509 | (1) |
|
|
509 | (1) |
|
Amplifier Biasing for Linear Operation |
|
|
510 | (2) |
|
|
512 | (1) |
|
Two-Port Models for Amplifiers |
|
|
513 | (6) |
|
|
515 | (4) |
|
Mismatched Source and Load Resistances |
|
|
519 | (1) |
|
Amplifier Transfer Functions and Frequency Response |
|
|
520 | (21) |
|
|
521 | (1) |
|
|
521 | (5) |
|
|
526 | (2) |
|
|
528 | (2) |
|
Narrow-Band or High-Q Band-Pass Amplifiers |
|
|
530 | (1) |
|
Band-Rejection Amplifiers |
|
|
531 | (1) |
|
|
532 | (1) |
|
More Complex Transfer Functions |
|
|
532 | (2) |
|
|
534 | (1) |
|
|
535 | (1) |
|
|
536 | (1) |
|
|
536 | (5) |
|
Ideal Operational Amplifiers |
|
|
541 | (69) |
|
The Differential Amplifier |
|
|
542 | (3) |
|
Differential Amplifier Model |
|
|
542 | (2) |
|
The Ideal Differential Amplifier |
|
|
544 | (1) |
|
The Ideal Operational Amplifier |
|
|
545 | (1) |
|
Assumptions for Ideal Operational Amplifier Analysis |
|
|
545 | (1) |
|
Analysis of Circuits Containing Ideal Operational Amplifiers |
|
|
546 | (24) |
|
|
546 | (4) |
|
The Noninverting Amplifier |
|
|
550 | (2) |
|
The Unity-Gain Buffer, or Voltage Follower |
|
|
552 | (2) |
|
|
554 | (2) |
|
|
556 | (3) |
|
The Instrumentation Amplifier |
|
|
559 | (2) |
|
An Active Low-Pass Filter |
|
|
561 | (3) |
|
|
564 | (3) |
|
|
567 | (1) |
|
|
568 | (2) |
|
Amplifier Terminology Review |
|
|
570 | (1) |
|
|
570 | (14) |
|
|
571 | (4) |
|
|
575 | (1) |
|
A High-Pass Filter with Gain |
|
|
575 | (2) |
|
|
577 | (2) |
|
|
579 | (3) |
|
Magnitude and Frequency Scaling |
|
|
582 | (2) |
|
Nonlinear Circuit Applications |
|
|
584 | (3) |
|
A Precision Half-Wave Rectifier |
|
|
585 | (1) |
|
Nonsaturating Precision-Rectifier Circuit |
|
|
586 | (1) |
|
|
587 | (1) |
|
Circuits Using Positive Feedback |
|
|
587 | (23) |
|
The Comparator and Schmitt Trigger |
|
|
588 | (1) |
|
The Astable Multivibrator |
|
|
589 | (4) |
|
The Monostable Multivibrator or One Shot |
|
|
593 | (1) |
|
|
594 | (1) |
|
|
595 | (1) |
|
|
596 | (1) |
|
|
597 | (1) |
|
|
597 | (13) |
|
Characteristics and Limitations of Operational Amplifiers |
|
|
610 | (58) |
|
Gain, Input Resistance, and Output Resistance |
|
|
611 | (11) |
|
|
611 | (1) |
|
|
612 | (2) |
|
Nonzero Output Resistance |
|
|
614 | (4) |
|
|
618 | (4) |
|
Summary of Nonideal Inverting and Noninverting Amplifiers |
|
|
622 | (1) |
|
Common-Mode Rejection and Input Resistance |
|
|
622 | (7) |
|
Finite Common-Mode Rejection Ratio |
|
|
622 | (1) |
|
|
623 | (3) |
|
Voltage-Follower Gain Error Due to CMRR |
|
|
626 | (2) |
|
Common-Mode Input Resistance |
|
|
628 | (1) |
|
DC Error Sources and Output Range Limitations |
|
|
629 | (9) |
|
|
629 | (2) |
|
Offset-Voltage Adjustment |
|
|
631 | (1) |
|
An Alternate Interpretation of CMRR |
|
|
631 | (1) |
|
Input-Bias and Offset Currents |
|
|
631 | (3) |
|
Output Voltage and Current Limits |
|
|
634 | (4) |
|
Frequency Response and Bandwidth of Operational Amplifiers |
|
|
638 | (30) |
|
Frequency Response of the Noninverting Amplifier |
|
|
641 | (2) |
|
Inverting Amplifier Frequency Response |
|
|
643 | (2) |
|
Frequency Response of Cascaded Amplifiers |
|
|
645 | (7) |
|
Large-Signal Limitations---Slew Rate and Full-Power Bandwidth |
|
|
652 | (1) |
|
Macro Model for Operational Amplifier Frequency Response |
|
|
653 | (1) |
|
Complete Op Amp Macro Models in SPICE |
|
|
654 | (1) |
|
Examples of Commercial General-Purpose Operational Amplifiers |
|
|
654 | (3) |
|
|
657 | (1) |
|
|
658 | (1) |
|
|
658 | (1) |
|
|
658 | (1) |
|
|
658 | (10) |
|
Small-Signal Modeling and Linear Amplification---Inverting Amplifiers |
|
|
668 | (82) |
|
The Transistor as an Amplifier |
|
|
669 | (3) |
|
|
670 | (1) |
|
|
671 | (1) |
|
Coupling and Bypass Capacitors |
|
|
672 | (1) |
|
Circuit Analysis Using dc and ac Equivalent Circuits |
|
|
673 | (4) |
|
Menu for dc and ac Analysis |
|
|
674 | (3) |
|
Introduction to Small-Signal Modeling |
|
|
677 | (3) |
|
Graphical Interpretation of the Small-Signal Behavior of the Diode |
|
|
678 | (1) |
|
Small-Signal Modeling of the Diode |
|
|
679 | (1) |
|
Small-Signal Models for Bipolar Junction Transistors |
|
|
680 | (8) |
|
|
682 | (1) |
|
Graphical Interpretation of the Transconductance |
|
|
683 | (1) |
|
Small-Signal Current Gain |
|
|
683 | (1) |
|
The Intrinsic Voltage Gain of the BJT |
|
|
684 | (1) |
|
Equivalent Forms of the Small-Signal Model |
|
|
685 | (1) |
|
Simplified Hybrid Pi Model |
|
|
686 | (1) |
|
Definition of a Small Signal for the Bipolar Transistor |
|
|
686 | (1) |
|
Small-Signal Model for the pnp Transistor |
|
|
687 | (1) |
|
ac Analysis Versus Transient Analysis in SPICE |
|
|
688 | (1) |
|
The BJT Common-Emitter (C-E) Amplifier |
|
|
688 | (3) |
|
|
690 | (1) |
|
|
690 | (1) |
|
Signal Source Voltage Gain |
|
|
691 | (1) |
|
Important Limits and Model Simplifications |
|
|
691 | (10) |
|
Zero Resistance in the Emitter |
|
|
691 | (1) |
|
A Design Guide for the Common-Emitter Amplifier with RE = o |
|
|
692 | (1) |
|
Common-Emitter Voltage Gain for Large Emitter Resistance |
|
|
693 | (1) |
|
Small-Signal Limit for the Common-Emitter Amplifier |
|
|
693 | (4) |
|
Resistance at the Collector of the Bipolar Transistor |
|
|
697 | (2) |
|
Output Resistance of the Overall Common-Emitter Amplifier |
|
|
699 | (2) |
|
Terminal Current Gain for the Common-Emitter Amplifier |
|
|
701 | (1) |
|
Small-Signal Models for Field-Effect Transistors |
|
|
701 | (5) |
|
Small-Signal Model for the MOSFET |
|
|
701 | (2) |
|
Intrinsic Voltage Gain of the MOSFET |
|
|
703 | (1) |
|
Definition of Small-Signal Operation for the MOSFET |
|
|
704 | (1) |
|
Body Effect in the Four-Terminal MOSFET |
|
|
704 | (1) |
|
Small-Signal Model for the PMOS Transistor |
|
|
705 | (1) |
|
Summary and Comparison of the Small-Signal Models of the BJT and FET |
|
|
706 | (3) |
|
The Common-Source Amplifier |
|
|
709 | (12) |
|
Common-Source Terminal Voltage Gain |
|
|
710 | (1) |
|
Signal Source Voltage Gain for the Common-Source Amplifier |
|
|
711 | (1) |
|
Common-Source Voltage Gain for Large Values of RS |
|
|
711 | (1) |
|
Zero Resistance in the Source |
|
|
711 | (3) |
|
A Design Guide for the Common-Source Amplifier with RS = o |
|
|
714 | (1) |
|
Small-Signal Limit for the Common-Source Amplifier |
|
|
714 | (3) |
|
Input Resistances of the Common-Emitter and Common-Source Amplifiers |
|
|
717 | (3) |
|
Common-Emitter and Common-Source Output Resistances |
|
|
720 | (1) |
|
Examples of Common-Emitter and Common-Source Amplifiers |
|
|
721 | (12) |
|
A Common-Emitter Amplifier |
|
|
722 | (4) |
|
ac Versus Transient Analysis in SPICE---Another Visit |
|
|
726 | (1) |
|
A MOSFET Common-Source Amplifier |
|
|
726 | (5) |
|
Comparison of the two Amplifier Examples |
|
|
731 | (1) |
|
Common-Emitter and Common-Source Amplifier Summary |
|
|
731 | (1) |
|
Feedback in the Inverting Amplifiers |
|
|
732 | (1) |
|
Guidelines for Neglecting the Transistor Output Resistance |
|
|
732 | (1) |
|
Amplifier Power and Signal Range |
|
|
733 | (17) |
|
|
733 | (1) |
|
|
734 | (3) |
|
|
737 | (1) |
|
|
738 | (1) |
|
|
738 | (12) |
|
Single-Transistor and Multistage ac-Coupled Amplifiers |
|
|
750 | (88) |
|
|
751 | (6) |
|
Signal Injection and Extraction---The BJT |
|
|
751 | (1) |
|
Signal Injection and Extraction---The FET |
|
|
752 | (1) |
|
Common-Emitter (C-E) and Common-Source (C-S) Amplifiers |
|
|
753 | (1) |
|
Common-Collector (C-C) and Common-Drain (C-D) Topologies |
|
|
754 | (2) |
|
Common-Base (C-B) and Common-Gate (C-G) Amplifiers |
|
|
756 | (1) |
|
Small-Signal Model Review |
|
|
757 | (1) |
|
Inverting Amplifiers---Common-Emitter and Common-Source Circuits |
|
|
757 | (6) |
|
Common-Emitter and Common-Source Amplifier Characteristics |
|
|
758 | (4) |
|
C-E/C-S Amplifier Summary |
|
|
762 | (1) |
|
Equivalent Transistor Representation of the Generalized C-E/C-S Transistor |
|
|
762 | (1) |
|
Follower Circuits---Common-Collector and Common-Drain Amplifiers |
|
|
763 | (8) |
|
|
763 | (1) |
|
|
764 | (1) |
|
Signal Source Voltage Gain |
|
|
764 | (3) |
|
|
767 | (1) |
|
Resistance at the Emitter Terminal |
|
|
767 | (3) |
|
|
770 | (1) |
|
C-C/C-D Amplifier Summary |
|
|
770 | (1) |
|
Noninverting Amplifiers---Common-Base and Common-Gate Circuits |
|
|
771 | (7) |
|
Terminal Voltage Gain and Input Resistance |
|
|
771 | (1) |
|
Signal Source Voltage Gain |
|
|
772 | (1) |
|
|
773 | (1) |
|
Resistance at the Collector and Drain Terminals |
|
|
774 | (1) |
|
|
775 | (1) |
|
Overall Input and Output Resistances for the Noninverting Amplifiers |
|
|
775 | (3) |
|
C-B/C-G Amplifier Summary |
|
|
778 | (1) |
|
Amplifier Prototype Review and Comparison |
|
|
778 | (8) |
|
|
779 | (2) |
|
|
781 | (5) |
|
Coupling and Bypass Capacitor Design |
|
|
786 | (11) |
|
Common-Emitter and Common-Source Amplifiers |
|
|
786 | (4) |
|
Common-Collector and Common-Drain Amplifiers |
|
|
790 | (3) |
|
Common-Base and Common-Gate Amplifiers |
|
|
793 | (3) |
|
Setting Lower Cutoff Frequency fL |
|
|
796 | (1) |
|
Amplifier Design Examples |
|
|
797 | (14) |
|
Monte Carlo Evaluation of the Common-Base Amplifier Design |
|
|
806 | (5) |
|
Multistage ac-Coupled Amplifiers |
|
|
811 | (27) |
|
A Three-Stage ac-Coupled Amplifier |
|
|
811 | (2) |
|
|
813 | (2) |
|
|
815 | (1) |
|
Signal Source Voltage Gain |
|
|
815 | (1) |
|
|
815 | (1) |
|
|
816 | (1) |
|
|
817 | (3) |
|
Improving Amplifier Voltage Gain |
|
|
820 | (1) |
|
Estimating the Lower Cutoff Frequency of the Multistage Amplifier |
|
|
820 | (2) |
|
|
822 | (1) |
|
|
823 | (1) |
|
|
824 | (1) |
|
|
824 | (14) |
|
Differential Amplifiers and Operational Amplifier Design |
|
|
838 | (147) |
|
|
839 | (22) |
|
Bipolar and MOS Differential Amplifiers |
|
|
840 | (1) |
|
dc Analysis of the Bipolar Differential Amplifier |
|
|
840 | (2) |
|
Transfer Characteristic for the Bipolar Differential Amplifier |
|
|
842 | (1) |
|
ac Analysis of the Bipolar Differential Amplifier |
|
|
843 | (1) |
|
Differential-Mode Gain and Input Resistance |
|
|
844 | (2) |
|
Common-Mode Gain and Input Resistance |
|
|
846 | (2) |
|
Common-Mode Rejection Ratio (CMRR) |
|
|
848 | (1) |
|
Analysis Using Differential- and Common-Mode Half-Circuits |
|
|
849 | (3) |
|
Biasing with Electronic Current Sources |
|
|
852 | (1) |
|
Modeling the Electronic Current Source in SPICE |
|
|
853 | (1) |
|
dc Analysis of the MOSFET Differential Amplifier |
|
|
853 | (2) |
|
Differential-Mode Input Signals |
|
|
855 | (1) |
|
Small-Signal Transfer Characteristic for the MOS Differential Amplifier |
|
|
856 | (1) |
|
Common-Mode Input Signals |
|
|
856 | (1) |
|
Two-Port Model for Differential Pairs |
|
|
857 | (4) |
|
Evolution to Basic Operational Amplifiers |
|
|
861 | (13) |
|
A Two-Stage Prototype for an Operational Amplifier |
|
|
861 | (6) |
|
Improving the Op Amp Voltage Gain |
|
|
867 | (1) |
|
Output Resistance Reduction |
|
|
868 | (4) |
|
A CMOS Operational Amplifier Prototype |
|
|
872 | (1) |
|
|
873 | (1) |
|
|
874 | (10) |
|
The Source Follower---A Class-A Output Stage |
|
|
874 | (2) |
|
Efficiency of Class-A Amplifiers |
|
|
876 | (1) |
|
Class-B Push-Pull Output Stage |
|
|
876 | (2) |
|
|
878 | (2) |
|
Class-AB Output Stages for Operational Amplifiers |
|
|
880 | (1) |
|
|
880 | (1) |
|
|
881 | (3) |
|
Electronic Current Sources |
|
|
884 | (9) |
|
Single-Transistor Current Sources |
|
|
885 | (1) |
|
Figure of Merit for Current Sources |
|
|
885 | (1) |
|
Higher Output Resistance Sources |
|
|
886 | (1) |
|
Current Source Design Examples |
|
|
886 | (7) |
|
|
893 | (1) |
|
|
894 | (15) |
|
dc Analysis of the MOS Transistor Current Mirror |
|
|
894 | (3) |
|
Changing the MOS Mirror Ratio |
|
|
897 | (1) |
|
dc Analysis of the Bipolar Transistor Current Mirror |
|
|
897 | (2) |
|
Altering the BJT Current Mirror Ratio |
|
|
899 | (1) |
|
|
900 | (2) |
|
|
902 | (1) |
|
Output Resistance of the Current Mirrors |
|
|
902 | (1) |
|
Two-Port Model for the Current Mirror |
|
|
903 | (3) |
|
The Widlar Current Source |
|
|
906 | (1) |
|
The MOS Version of the Widlar Source |
|
|
907 | (2) |
|
High-Output-Resistance Current Mirrors |
|
|
909 | (8) |
|
The Wilson Current Sources |
|
|
909 | (2) |
|
Output Resistance of the Wilson Source |
|
|
911 | (1) |
|
|
912 | (1) |
|
Output Resistance of the Cascode Sources |
|
|
913 | (1) |
|
|
914 | (3) |
|
Reference Current Generation |
|
|
917 | (7) |
|
Supply-Independent Biasing |
|
|
917 | (3) |
|
A Supply-Independent MOS Reference Cell |
|
|
920 | (4) |
|
The Current Mirror As an Active Load |
|
|
924 | (11) |
|
CMOS Differential Amplifier with Active Load |
|
|
924 | (7) |
|
Bipolar Differential Amplifier with Active Load |
|
|
931 | (4) |
|
Active Loads in Operational Amplifiers |
|
|
935 | (5) |
|
|
935 | (1) |
|
|
936 | (2) |
|
Bipolar Operational Amplifiers |
|
|
938 | (1) |
|
|
939 | (1) |
|
The μA741 Operational Amplifier |
|
|
940 | (45) |
|
|
941 | (1) |
|
dc Analysis of the 741 Input Stage |
|
|
942 | (3) |
|
ac Analysis of the 741 Input Stage |
|
|
945 | (1) |
|
Voltage Gain of the Complete Amplifier |
|
|
946 | (4) |
|
|
950 | (2) |
|
|
952 | (1) |
|
|
952 | (1) |
|
Summary of theμA741 Operational Amplifier Characteristics |
|
|
952 | (3) |
|
|
955 | (2) |
|
|
957 | (1) |
|
|
957 | (1) |
|
|
958 | (1) |
|
|
958 | (27) |
|
|
985 | (83) |
|
Amplifier Frequency Response |
|
|
986 | (5) |
|
|
987 | (1) |
|
Estimating ωL in the Absence of a Dominant Pole |
|
|
987 | (3) |
|
|
990 | (1) |
|
Estimating ωH in the Absence of a Dominant Pole |
|
|
990 | (1) |
|
Direct Determination of the Low-Frequency Poles and Zeros-The Common-Source Amplifier |
|
|
991 | (5) |
|
Estimation of ωL Using the Short-Circuit Time-Constant Method |
|
|
996 | (9) |
|
Estimate of ωL for the Common-Emitter Amplifier |
|
|
997 | (4) |
|
Estimate of ωL for the Common-Source Amplifier |
|
|
1001 | (1) |
|
Estimate of ωL for the Common-Base Amplifier |
|
|
1002 | (1) |
|
Estimate of ωL for the Common-Gate Amplifier |
|
|
1003 | (1) |
|
Estimate of ωL for the Common-Collector Amplifier |
|
|
1004 | (1) |
|
Estimate of ωL for the Common-Drain Amplifier |
|
|
1004 | (1) |
|
Transistor Models at High Frequencies |
|
|
1005 | (7) |
|
Frequency-Dependent Hybrid-Pi Model for the Bipolar Transistor |
|
|
1005 | (1) |
|
Modeling Cπ and Cμ in SPICE |
|
|
1006 | (1) |
|
|
1006 | (3) |
|
High-Frequency Model for the FET |
|
|
1009 | (1) |
|
Modeling CGS and CGD in SPICE |
|
|
1010 | (1) |
|
Channel Length Dependence of ƒT |
|
|
1010 | (2) |
|
Limitations of the High-Frequency Models |
|
|
1012 | (1) |
|
Base Resistance in the Hybrid-Pi Model |
|
|
1012 | (3) |
|
Effect of Base Resistance on Midband Amplifiers |
|
|
1013 | (2) |
|
High-Frequency Common-Emitter and Common-Source Amplifier Analysis |
|
|
1015 | (16) |
|
|
1016 | (1) |
|
Common-Emitter and Common-Source Amplifier High-Frequency Response |
|
|
1017 | (2) |
|
Direct Analysis of the Common-Emitter Transfer Characteristic |
|
|
1019 | (1) |
|
Poles of the Common-Emitter Amplifier |
|
|
1020 | (3) |
|
Dominant Pole for the Common-Source Amplifier |
|
|
1023 | (1) |
|
Estimation of ωH Using the Open-Circuit Time-Constant Method |
|
|
1024 | (3) |
|
Common-Source Amplifier with Source Degeneration Resistance |
|
|
1027 | (2) |
|
Poles of the Common-Emitter with Emitter degeneration Resistance |
|
|
1029 | (2) |
|
Common-Base and Common-Gate Amplifier High-Frequency Response |
|
|
1031 | (3) |
|
Common-Collector and Common-Drain Amplifier High-Frequency Response |
|
|
1034 | (2) |
|
Single-Stage Amplifier High-Frequency Response Summary |
|
|
1036 | (1) |
|
Amplifier Gain-Bandwidth Limitations |
|
|
1036 | (1) |
|
Frequency Response of Multistage Amplifiers |
|
|
1037 | (13) |
|
|
1038 | (1) |
|
The Common-Collector/Common-Base Cascade |
|
|
1039 | (2) |
|
High-Frequency Response of the Cascode Amplifier |
|
|
1041 | (1) |
|
Cutoff Frequency for the Current Mirror |
|
|
1042 | (1) |
|
Three-Stage Amplifier Example |
|
|
1043 | (7) |
|
|
1050 | (18) |
|
|
1050 | (3) |
|
Use of a Tapped Inductor-The Auto Transformer |
|
|
1053 | (1) |
|
Multiple Tuned Circuits---Synchronous and Stagger Tuning |
|
|
1054 | (2) |
|
|
1056 | (1) |
|
|
1057 | (1) |
|
|
1058 | (1) |
|
|
1058 | (10) |
|
Feedback, Stability, and Oscillators |
|
|
1068 | (102) |
|
|
1069 | (1) |
|
Feedback Amplifier Design Using Two-Port Network Theory |
|
|
1070 | (1) |
|
Voltage Amplifiers---Series-Shunt Feedback |
|
|
1071 | (7) |
|
|
1072 | (2) |
|
|
1074 | (1) |
|
|
1074 | (4) |
|
Transresistance Amplifiers---Shunt-Shunt Feedback |
|
|
1078 | (8) |
|
|
1079 | (2) |
|
|
1081 | (1) |
|
|
1081 | (5) |
|
Current Amplifiers---Shunt-Series Feedback |
|
|
1086 | (4) |
|
|
1086 | (2) |
|
|
1088 | (1) |
|
|
1089 | (1) |
|
Transconductance Amplifiers---Series-Series Feedback |
|
|
1090 | (2) |
|
Transconductance Analysis |
|
|
1090 | (2) |
|
Input and Output Resistances |
|
|
1092 | (1) |
|
Common Errors in Applying Two-Port Feedback Theory |
|
|
1092 | (8) |
|
|
1100 | (7) |
|
Direct Calculation of the Loop Gain |
|
|
1100 | (2) |
|
Finding the Loop Gain Using Successive Voltage and Current Injection |
|
|
1102 | (3) |
|
|
1105 | (2) |
|
Blackman's Theorem to the Rescue |
|
|
1107 | (7) |
|
Using Feedback to Control Frequency Response |
|
|
1114 | (2) |
|
Stability of Feedback Amplifiers |
|
|
1116 | (6) |
|
|
1116 | (1) |
|
|
1117 | (1) |
|
Second-Order Systems and Phase Margin |
|
|
1118 | (1) |
|
Third-Order Systems and Gain Margin |
|
|
1119 | (1) |
|
Determining Stability from the Bode Plot |
|
|
1120 | (2) |
|
Single-Pole Operational Amplifier Compensation |
|
|
1122 | (15) |
|
Three-Stage Op Amp Analysis |
|
|
1123 | (1) |
|
Transmission Zeros in FET Op Amps |
|
|
1124 | (2) |
|
Bipolar Amplifier Compensation |
|
|
1126 | (1) |
|
Slew Rate of the Operational Amplifier |
|
|
1127 | (1) |
|
Relationships Between Slew Rate and Gain-Bandwidth Product |
|
|
1128 | (9) |
|
|
1137 | (27) |
|
The Barkhausen Criteria for Oscillation |
|
|
1137 | (3) |
|
Oscillators Employing Frequency-Selective RC Networks |
|
|
1140 | (4) |
|
|
1144 | (2) |
|
|
1146 | (5) |
|
|
1151 | (1) |
|
|
1152 | (1) |
|
|
1152 | (1) |
|
|
1153 | (11) |
|
|
|
Standard Discrete Component Values |
|
|
1164 | (3) |
|
Solid-State Device Models and SPICE Simulation Parameters |
|
|
1167 | (3) |
Index |
|
1170 | |