Muutke küpsiste eelistusi

Microelectronic Circuit Design 3rd Revised edition [Pehme köide]

  • Formaat: Paperback / softback, kõrgus x laius x paksus: 259x208x37 mm, kaal: 2031 g
  • Ilmumisaeg: 01-Feb-2008
  • Kirjastus: McGraw Hill Higher Education
  • ISBN-10: 007127409X
  • ISBN-13: 9780071274098
Teised raamatud teemal:
  • Formaat: Paperback / softback, kõrgus x laius x paksus: 259x208x37 mm, kaal: 2031 g
  • Ilmumisaeg: 01-Feb-2008
  • Kirjastus: McGraw Hill Higher Education
  • ISBN-10: 007127409X
  • ISBN-13: 9780071274098
Teised raamatud teemal:
Preface xix
PART ONE SOLID STATE ELECTRONIC AND DEVICES
Introduction to Electronics
3(38)
A Brief History of Electronics: From Vacuum Tubes to Ultra-Large-Scale Integration
5(3)
Classification of Electronic Signals
8(4)
Digital Signals
9(1)
Analog Signals
9(1)
A/D and D/A Converters---Bridging the Analog and Digital Domains
10(2)
Notational Conventions
12(1)
Problem-Solving Approach
13(2)
Important Concepts from Circuit Theory
15(6)
Voltage and Current Division
15(1)
Thevenin and Norton Circuit Representations
16(5)
Frequency Spectrum of Electronic Signals
21(1)
Amplifiers
22(4)
Ideal Operational Amplifiers
23(2)
Amplifier Frequency Response
25(1)
Element Variations in Circuit Design
26(8)
Mathematical Modeling of Tolerances
26(1)
Worst-Case Analysis
27(2)
Monte Carlo Analysis
29(3)
Temperature Coefficients
32(2)
Numeric Precision
34(7)
Summary
34(1)
Key Terms
35(1)
References
36(1)
Additional Reading
36(1)
Problems
37(4)
Solid-State Electronics
41(32)
Solid-State Electronic Materials
43(1)
Covalent Bond Model
44(3)
Drift Currents and Mobility in Semiconductors
47(2)
Drift Currents
47(1)
Mobility
48(1)
Velocity Saturation
48(1)
Resistivity of Intrinsic Silicon
49(1)
Impurities in Semiconductors
50(1)
Donor Impurities in Silicon
51(1)
Acceptor Impurities in Silicon
51(1)
Electron and Hole Concentrations in Doped Semiconductors
51(3)
n-Type Material (ND > NA)
52(1)
p-Type Material (NA < ND)
53(1)
Mobility and Resistivity in Doped Semiconductors
54(4)
Diffusion Currents
58(1)
Total Current
59(1)
Energy Band Model
60(3)
Electron--Hole Pair Generation in an Intrinsic Semiconductor
60(1)
Energy Band Model for a Doped Semiconductor
61(1)
Compensated Semiconductors
61(2)
Overview of Integrated Circuit Fabrication
63(10)
Summary
66(1)
Key Terms
67(1)
Reference
68(1)
Additional Reading
68(1)
Important Equations
68(1)
Problems
69(4)
Solid-State Diodes and Diode Circuits
73(70)
The pn Junction Diode
74(5)
pn Junction Electrostatics
74(4)
Internal Diode Currents
78(1)
The i-v Characteristics of the Diode
79(2)
The Diode Equation: A Mathematical Model for the Diode
81(3)
Diode Characteristics Under Reverse, Zero, and Forward Bias
84(4)
Reverse Bias
84(1)
Zero Bias
84(1)
Forward Bias
85(3)
Diode Temperature Coefficient
88(1)
Diodes Under Reverse Bias
88(3)
Saturation Current in Real Diodes
89(1)
Reverse Breakdown
90(1)
Diode Model for the Breakdown Region
91(1)
pn Junction Capacitance
91(1)
Reverse Bias
91(1)
Forward Bias
92(1)
Schottky Barrier Diode
92(1)
Diode SPICE Model and Layout
93(2)
Diode Circuit Analysis
95(10)
Load-Line Analysis
95(2)
Analysis Using the Mathematical Model for the Diode
97(4)
The Ideal Diode Model
101(2)
Constant Voltage Drop Model
103(1)
Model Comparison and Discussion
104(1)
Multiple-Diode Circuits
105(3)
Analysis of Diodes Operating in the Breakdown Region
108(4)
Load-Line Analysis
108(1)
Analysis with the Piecewise Linear Model
109(1)
Voltage Regulation
109(1)
Analysis Including Zener Resistance
110(1)
Line and Load Regulation
111(1)
Half-Wave Rectifier Circuits
112(9)
Half-Wave Rectifier with Resistor Load
112(2)
Rectifier Filter Capacitor
114(1)
Half-Wave Rectifier with RC Load
114(1)
Ripple Voltage and Conduction Interval
115(3)
Diode Current
118(1)
Surge Current
119(1)
Peak-Inverse-Voltage (PIV) Rating
119(1)
Diode Power Dissipation
120(1)
Half-Wave Rectifier with Negative Output Voltage
120(1)
Full-Wave Rectifier Circuits
121(1)
Full-Wave Rectifier with Negative Output Voltage
122(1)
Full-Wave Bridge Rectification
122(1)
Rectifier Comparison and Design Tradeoffs
123(4)
Dynamic Switching Behavior of the Diode
127(1)
Photo Diodes, Solar Cells, and Light-Emitting Diodes
128(15)
Photo Diodes and Photodetectors
128(1)
Power Generation from Solar Cells
129(1)
Light-Emitting Diodes (LEDs)
130(1)
Summary
131(1)
Key Terms
132(1)
Reference
133(1)
Additional Reading
133(1)
Problems
133(10)
Field-Effect Transistors
143(64)
Characteristics of the MOS Capacitor
144(2)
Accumulation Region
145(1)
Depletion Region
146(1)
Inversion Region
146(1)
The NMOS Transistor
146(13)
Qualitative i-v Behavior of the NMOS Transistor
147(1)
Triode1 Region Characteristics of the NMOS Transistor
148(3)
On Resistance
151(1)
Saturation of the i-v Characteristics
152(1)
Mathematical Model in the Saturation (Pinch-Off) Region
153(2)
Transconductance
155(1)
Channel-Length Modulation
155(1)
Transfer Characteristics and Depletion-Mode MOSFETS
156(1)
Body Effect or Substrate Sensitivity
157(2)
PMOS Transistors
159(1)
MOSFET Circuit Symbols
160(3)
MOS Transistor Fabrication and Layout Design Rules2
163(2)
Minimum Feature Size and Alignment Tolerance
163(1)
MOS Transistor Layout
164(1)
Capacitances in MOS Transistors
165(2)
NMOS Transistor Capacitances in the Triode Region
166(1)
Capacitances in the Saturation Region
167(1)
Capacitances in Cutoff
167(1)
MOSFET Modeling in SPICE
167(2)
Biasing the NMOS Field-Effect Transistor
169(18)
Why Do We Need BIAS?
169(18)
Biasing the PMOS Field-Effect Transistor
187(2)
MOS Transistor Scaling
189(18)
Drain Current
189(2)
Gate Capacitance
191(1)
Circuit and Power Densities
191(1)
Power-Delay Product
191(1)
Cutoff Frequency
192(1)
High Field Limitations
192(1)
Subthreshold Conduction
193(1)
Summary
194(1)
Key Terms
195(1)
References
196(1)
Problems
197(10)
Bipolar Junction Transistors
207(68)
Physical Structure of the Bipolar Transistor
208(1)
The Transport Model for the npn Transistor
209(6)
Forward Characteristics
210(2)
Reverse Characteristics
212(1)
The Complete Transport Model Equations for Arbitrary Bias Conditions
213(2)
The pnp Transistor
215(2)
Equivalent Circuit Representations for the Transport Models
217(1)
The i-v Characteristics of the Bipolar Transistor
218(2)
Output Characteristics
218(1)
Transfer Characteristics
219(1)
The Operating Regions of the Bipolar Transistor
220(1)
Transport Model Simplifications
221(14)
Simplified Model for the Cutoff Region
221(2)
Model Simplifications for the Forward-Active Region
223(6)
Diodes in Bipolar Integrated Circuits
229(1)
Simplified Model for the Reverse-Active Region
230(2)
Modeling Operation in the Saturation Region
232(3)
Nonideal Behavior of the Bipolar Transistor
235(7)
Junction Breakdown Voltages
236(1)
Minority-Carrier Transport in the Base Region
236(1)
Base Transit Time
237(2)
Diffusion Capacitance
239(1)
Frequency Dependence of the Common-Emitter Current Gain
240(1)
The Early Effect and Early Voltage
240(1)
Modeling the Early Effect
241(1)
Origin of the Early Effect
241(1)
Transconductance
242(1)
Bipolar Technology and SPICE Model
243(3)
Qualitative Description
243(1)
SPICE Model Equations
244(1)
High-Performance Bipolar Transistors
245(1)
Practical Bias Circuits for the BJT
246(3)
Four-Resistor Bias Network
248(1)
Design Objectives for the Four-Resistor Bias Network
249(5)
Tolerances in Bias Circuits
254(21)
Worst-Case Analysis
255(2)
Monte Carlo Analysis
257(3)
Summary
260(2)
Key Terms
262(1)
References
262(1)
Problems
263(12)
PART TWO DIGITAL ELECTRONICS
Introduction to Digital Electronics
275(77)
Ideal Logic Gates
277(1)
Logic Level Definitions and Noise Margins
277(4)
Logic Voltage Levels
279(1)
Noise Margins
279(1)
Logic Gate Design Goals
280(1)
Dynamic Response of Logic Gates
281(2)
Rise Time and Fall Times
281(1)
Propagation Delay
282(1)
Power-Delay Product
282(1)
Review of Boolean Algebra
283(2)
NMOS Logic Design
285(9)
NMOS Inverter with Resistive Load
286(1)
Design of the W/L Ratio of MS
287(1)
Load Resistor Design
288(1)
Load-Line Visualization
288(2)
On-Resistance of the Switching Device
290(1)
Noise Margin Analysis
291(1)
Calculation of VIL and VOH
291(1)
Calculation of VIH and VOL
292(1)
Load Resistor Problems
293(1)
Transistor Alternatives to the Load Resistor
294(17)
The NMOS Saturated Load Inverter
295(8)
NMOS Inverter with a Linear Load Device
303(1)
NMOS Inverter with a Depletion-Mode Load
304(3)
Static Design of the Pseudo NMOS Inverter
307(4)
NMOS Inverter Summary and Comparison
311(1)
NMOS NAND and NOR Gates
312(4)
NOR Gates
313(1)
NAND Gates
314(1)
NOR and NAND Gate Layouts in NMOS Depletion-Mode Technology
315(1)
Complex NMOS Logic Design
316(5)
Selecting Between the Two Designs
319(2)
Power Dissipation
321(4)
Static Power Dissipation
321(1)
Dynamic Power Dissipation
322(1)
Power Scaling in MOS Logic Gates
323(2)
Dynamic Behavior of MOS Logic Gates
325(10)
Capacitances in Logic Circuits
325(1)
Dynamic Response of the NMOS Inverter with a Resistive Load
326(5)
Pseudo NMOS Inverter
331(1)
A Final Comparison of NMOS Inverter Delays
332(3)
PMOS Logic
335(17)
PMOS Inverters
335(3)
NOR and NAND Gates
338(1)
Summary
338(2)
Key Terms
340(1)
References
341(1)
Additional Reading
341(1)
Problems
341(11)
Complementary MOS (CMOS) Logic Design
352(46)
CMOS Inverter Technology
353(2)
CMOS Inverter Layout
355(1)
Static Characteristics of the CMOS Inverter
355(5)
CMOS Voltage Transfer Characteristics
356(2)
Noise Margins for the CMOS Inverter
358(2)
Dynamic Behavior of the CMOS Inverter
360(5)
Propagation Delay Estimate
360(2)
Rise and Fall Times
362(2)
Delay of Cascaded Inverters
364(1)
Power Dissipation and Power Delay Product in CMOS
365(2)
Static Power Dissipation
365(1)
Dynamic Power Dissipation
365(1)
Power-Delay Product
366(1)
CMOS NOR and NAND Gates
367(5)
CMOS NOR Gate
367(3)
CMOS NAND Gates
370(2)
Design of Complex Gates in CMOS
372(4)
Minimum Size Gate Design and Performance
376(3)
Dynamic Domino CMOS Logic
379(1)
Cascade Buffers
380(4)
Cascade Buffer Delay Model
381(1)
Optimum Number of Stages
381(3)
The CMOS Transmission Gate
384(1)
CMOS Latchup
384(14)
Summary
387(1)
Key Terms
388(1)
References
389(1)
Problems
389(9)
MOS Memory and Storage Circuits
398(42)
Random Access Memory
399(2)
Random Access Memory (RAM) Architecture
399(1)
A 256-Mb Memory Chip
400(1)
Static Memory Cells
401(7)
Memory Cell Isolation and Access---The 6-T Cell
402(1)
The Read Operation
403(3)
Writing Data into the 6-T Cell
406(2)
Dynamic Memory Cells
408(6)
The One-Transistor Cell
410(1)
Data Storage in the 1-T Cell
410(2)
Reading Data from the 1-T Cell
412(1)
The Four-Transistor Cell
413(1)
Sense Amplifiers
414(6)
A Sense Amplifier for the 6-T Cell
414(2)
A Sense Amplifier for the 1-T Cell
416(2)
The Boosted Wordline Circuit
418(1)
Clocked CMOS Sense Amplifiers
418(2)
Address Decoders
420(4)
NOR Decoder
420(1)
NAND Decoder
420(2)
Decoders in Domino CMOS Logic
422(1)
Pass-Transistor Column Decoder
422(2)
Read-Only Memory (ROM)
424(3)
Flip-Flops
427(13)
RS Flip-Flop
429(1)
The D-Latch Using Transmission Gates
430(1)
A Master-Slave D Flip-Flop
430(1)
Summary
431(1)
Key Terms
432(1)
References
432(1)
Problems
433(7)
Bipolar Logic Circuits
440(65)
The Current Switch (Emitter-Coupled Pair)
441(3)
Mathematical Model for Static Behavior of the Current Switch
442(1)
Current Switch Analysis for VI > VREF
443(1)
Current Switch Analysis for VI < VREF
444(1)
The Emitter-Coupled Logic (ECL) Gate
444(3)
ECL Gate with VI = VH
445(1)
ECL Gate with VI = VL
446(1)
Input Current of the ECL Gate
446(1)
ECL Summary
446(1)
Noise Margin Analysis for the ECL Gate
447(2)
VIL, VOH, VIH, and VOL
447(1)
Noise Margins
448(1)
Current Source Implementation
449(2)
The ECL OR-NOR Gate
451(2)
The Emitter Follower
453(3)
Emitter Follower with a Load Resistor
454(2)
``Emitter Dotting'' or ``Wired-OR'' Logic
456(1)
Parallel Connection of Emitter-Follower Outputs
457(1)
The Wired-OR Logic Function
457(1)
ECL Power-Delay Characteristics
457(4)
Power Dissipation
457(2)
Gate Delay
459(1)
Power-Delay Product
460(1)
The Saturating Bipolar Inverter
461(8)
Static Inverter Characteristics
464(1)
Saturation Voltage of the Bipolar Transistor
464(2)
Load-Line Visualization
466(1)
Switching Characteristics of the Saturated BJT
467(2)
A Transistor-Transistor Logic (TTL) Prototype
469(8)
TTL Inverter for VI = VL
470(1)
TTL Inverter for VI = VH
471(1)
Power in the Prototype TTL Gate
471(1)
VIH, VIL, and Noise Margins for the TTL Prototype
472(2)
Prototype Inverter Summary
474(1)
Fanout Limitations of the TTL Prototype
474(3)
The Standard 7400 Series TTL Inverter
477(5)
Analysis for VI = VL
478(1)
Analysis for VI = VH
479(1)
Power Consumption
480(1)
TTL Propagation Delay and Power-Delay Product
480(1)
TTL Voltage Transfer Characteristic and Noise Margins
481(1)
Fanout Limitations of Standard TTL
481(1)
Logic Functions in TTL
482(2)
Multi-Emitter Input Transistors
482(1)
TTL NAND Gates
482(1)
Input Clamping Diodes
483(1)
Schottky-Clamped TTL
484(1)
Comparison of the Power-Delay Products of ECL and TTL
485(1)
BiCMOS Logic
486(19)
BiCMOS Buffers
487(1)
BiNMOS Inverters
488(2)
BiCMOS Logic Gates
490(1)
Summary
491(1)
Key Terms
492(1)
Reference
493(1)
Additional Reading
493(1)
Problems
493(12)
PART THREE ANALOG CIRCUIT DESIGN
Analog Systems
505(36)
An Example of an Analog Electronic System
506(1)
Amplification
507(3)
Voltage Gain
508(1)
Current Gain
508(1)
Power Gain
509(1)
The Decibel Scale
509(1)
Amplifier Biasing for Linear Operation
510(2)
Distortion in Amplifiers
512(1)
Two-Port Models for Amplifiers
513(6)
The g-parameters
515(4)
Mismatched Source and Load Resistances
519(1)
Amplifier Transfer Functions and Frequency Response
520(21)
Bode Plots
521(1)
The Low-Pass Amplifier
521(5)
The High-Pass Amplifier
526(2)
Band-Pass Amplifiers
528(2)
Narrow-Band or High-Q Band-Pass Amplifiers
530(1)
Band-Rejection Amplifiers
531(1)
The All-Pass Function
532(1)
More Complex Transfer Functions
532(2)
Summary
534(1)
Key Terms
535(1)
References
536(1)
Problems
536(5)
Ideal Operational Amplifiers
541(69)
The Differential Amplifier
542(3)
Differential Amplifier Model
542(2)
The Ideal Differential Amplifier
544(1)
The Ideal Operational Amplifier
545(1)
Assumptions for Ideal Operational Amplifier Analysis
545(1)
Analysis of Circuits Containing Ideal Operational Amplifiers
546(24)
The Inverting Amplifier
546(4)
The Noninverting Amplifier
550(2)
The Unity-Gain Buffer, or Voltage Follower
552(2)
The Summing Amplifier
554(2)
The Difference Amplifier
556(3)
The Instrumentation Amplifier
559(2)
An Active Low-Pass Filter
561(3)
The Integrator
564(3)
The Differentiator
567(1)
Cascaded Amplifiers
568(2)
Amplifier Terminology Review
570(1)
Active Filters
570(14)
Low-Pass Filter
571(4)
Sensitivity
575(1)
A High-Pass Filter with Gain
575(2)
Band-Pass Filter
577(2)
The Tow-Thomas Biquad
579(3)
Magnitude and Frequency Scaling
582(2)
Nonlinear Circuit Applications
584(3)
A Precision Half-Wave Rectifier
585(1)
Nonsaturating Precision-Rectifier Circuit
586(1)
An AC Voltmeter
587(1)
Circuits Using Positive Feedback
587(23)
The Comparator and Schmitt Trigger
588(1)
The Astable Multivibrator
589(4)
The Monostable Multivibrator or One Shot
593(1)
Summary
594(1)
Key Terms
595(1)
References
596(1)
Additional Reading
597(1)
Problems
597(13)
Characteristics and Limitations of Operational Amplifiers
610(58)
Gain, Input Resistance, and Output Resistance
611(11)
Finite Open-Loop Gain
611(1)
Gain Error
612(2)
Nonzero Output Resistance
614(4)
Finite Input Resistance
618(4)
Summary of Nonideal Inverting and Noninverting Amplifiers
622(1)
Common-Mode Rejection and Input Resistance
622(7)
Finite Common-Mode Rejection Ratio
622(1)
Why is CMRR Important?
623(3)
Voltage-Follower Gain Error Due to CMRR
626(2)
Common-Mode Input Resistance
628(1)
DC Error Sources and Output Range Limitations
629(9)
Input-Offset Voltage
629(2)
Offset-Voltage Adjustment
631(1)
An Alternate Interpretation of CMRR
631(1)
Input-Bias and Offset Currents
631(3)
Output Voltage and Current Limits
634(4)
Frequency Response and Bandwidth of Operational Amplifiers
638(30)
Frequency Response of the Noninverting Amplifier
641(2)
Inverting Amplifier Frequency Response
643(2)
Frequency Response of Cascaded Amplifiers
645(7)
Large-Signal Limitations---Slew Rate and Full-Power Bandwidth
652(1)
Macro Model for Operational Amplifier Frequency Response
653(1)
Complete Op Amp Macro Models in SPICE
654(1)
Examples of Commercial General-Purpose Operational Amplifiers
654(3)
Summary
657(1)
Key Terms
658(1)
References
658(1)
Additional Reading
658(1)
Problems
658(10)
Small-Signal Modeling and Linear Amplification---Inverting Amplifiers
668(82)
The Transistor as an Amplifier
669(3)
The BJT Amplifier
670(1)
The MOSFET Amplifier
671(1)
Coupling and Bypass Capacitors
672(1)
Circuit Analysis Using dc and ac Equivalent Circuits
673(4)
Menu for dc and ac Analysis
674(3)
Introduction to Small-Signal Modeling
677(3)
Graphical Interpretation of the Small-Signal Behavior of the Diode
678(1)
Small-Signal Modeling of the Diode
679(1)
Small-Signal Models for Bipolar Junction Transistors
680(8)
The Hybrid-Pi Model
682(1)
Graphical Interpretation of the Transconductance
683(1)
Small-Signal Current Gain
683(1)
The Intrinsic Voltage Gain of the BJT
684(1)
Equivalent Forms of the Small-Signal Model
685(1)
Simplified Hybrid Pi Model
686(1)
Definition of a Small Signal for the Bipolar Transistor
686(1)
Small-Signal Model for the pnp Transistor
687(1)
ac Analysis Versus Transient Analysis in SPICE
688(1)
The BJT Common-Emitter (C-E) Amplifier
688(3)
Terminal Voltage Gain
690(1)
Input Resistance
690(1)
Signal Source Voltage Gain
691(1)
Important Limits and Model Simplifications
691(10)
Zero Resistance in the Emitter
691(1)
A Design Guide for the Common-Emitter Amplifier with RE = o
692(1)
Common-Emitter Voltage Gain for Large Emitter Resistance
693(1)
Small-Signal Limit for the Common-Emitter Amplifier
693(4)
Resistance at the Collector of the Bipolar Transistor
697(2)
Output Resistance of the Overall Common-Emitter Amplifier
699(2)
Terminal Current Gain for the Common-Emitter Amplifier
701(1)
Small-Signal Models for Field-Effect Transistors
701(5)
Small-Signal Model for the MOSFET
701(2)
Intrinsic Voltage Gain of the MOSFET
703(1)
Definition of Small-Signal Operation for the MOSFET
704(1)
Body Effect in the Four-Terminal MOSFET
704(1)
Small-Signal Model for the PMOS Transistor
705(1)
Summary and Comparison of the Small-Signal Models of the BJT and FET
706(3)
The Common-Source Amplifier
709(12)
Common-Source Terminal Voltage Gain
710(1)
Signal Source Voltage Gain for the Common-Source Amplifier
711(1)
Common-Source Voltage Gain for Large Values of RS
711(1)
Zero Resistance in the Source
711(3)
A Design Guide for the Common-Source Amplifier with RS = o
714(1)
Small-Signal Limit for the Common-Source Amplifier
714(3)
Input Resistances of the Common-Emitter and Common-Source Amplifiers
717(3)
Common-Emitter and Common-Source Output Resistances
720(1)
Examples of Common-Emitter and Common-Source Amplifiers
721(12)
A Common-Emitter Amplifier
722(4)
ac Versus Transient Analysis in SPICE---Another Visit
726(1)
A MOSFET Common-Source Amplifier
726(5)
Comparison of the two Amplifier Examples
731(1)
Common-Emitter and Common-Source Amplifier Summary
731(1)
Feedback in the Inverting Amplifiers
732(1)
Guidelines for Neglecting the Transistor Output Resistance
732(1)
Amplifier Power and Signal Range
733(17)
Power Dissipation
733(1)
Signal Range
734(3)
Summary
737(1)
Key Terms
738(1)
Problems
738(12)
Single-Transistor and Multistage ac-Coupled Amplifiers
750(88)
Amplifier Classification
751(6)
Signal Injection and Extraction---The BJT
751(1)
Signal Injection and Extraction---The FET
752(1)
Common-Emitter (C-E) and Common-Source (C-S) Amplifiers
753(1)
Common-Collector (C-C) and Common-Drain (C-D) Topologies
754(2)
Common-Base (C-B) and Common-Gate (C-G) Amplifiers
756(1)
Small-Signal Model Review
757(1)
Inverting Amplifiers---Common-Emitter and Common-Source Circuits
757(6)
Common-Emitter and Common-Source Amplifier Characteristics
758(4)
C-E/C-S Amplifier Summary
762(1)
Equivalent Transistor Representation of the Generalized C-E/C-S Transistor
762(1)
Follower Circuits---Common-Collector and Common-Drain Amplifiers
763(8)
Terminal Voltage Gain
763(1)
Resistance
764(1)
Signal Source Voltage Gain
764(3)
Follower Signal Range
767(1)
Resistance at the Emitter Terminal
767(3)
Current Gain
770(1)
C-C/C-D Amplifier Summary
770(1)
Noninverting Amplifiers---Common-Base and Common-Gate Circuits
771(7)
Terminal Voltage Gain and Input Resistance
771(1)
Signal Source Voltage Gain
772(1)
Input Signal Range
773(1)
Resistance at the Collector and Drain Terminals
774(1)
Current Gain
775(1)
Overall Input and Output Resistances for the Noninverting Amplifiers
775(3)
C-B/C-G Amplifier Summary
778(1)
Amplifier Prototype Review and Comparison
778(8)
The BJT Amplifiers
779(2)
The FET Amplifiers
781(5)
Coupling and Bypass Capacitor Design
786(11)
Common-Emitter and Common-Source Amplifiers
786(4)
Common-Collector and Common-Drain Amplifiers
790(3)
Common-Base and Common-Gate Amplifiers
793(3)
Setting Lower Cutoff Frequency fL
796(1)
Amplifier Design Examples
797(14)
Monte Carlo Evaluation of the Common-Base Amplifier Design
806(5)
Multistage ac-Coupled Amplifiers
811(27)
A Three-Stage ac-Coupled Amplifier
811(2)
Voltage Gain
813(2)
Input Resistance
815(1)
Signal Source Voltage Gain
815(1)
Output Resistance
815(1)
Current and Power Gain
816(1)
Input Signal Range
817(3)
Improving Amplifier Voltage Gain
820(1)
Estimating the Lower Cutoff Frequency of the Multistage Amplifier
820(2)
Summary
822(1)
Key Terms
823(1)
Additional Reading
824(1)
Problems
824(14)
Differential Amplifiers and Operational Amplifier Design
838(147)
Differential Amplifiers
839(22)
Bipolar and MOS Differential Amplifiers
840(1)
dc Analysis of the Bipolar Differential Amplifier
840(2)
Transfer Characteristic for the Bipolar Differential Amplifier
842(1)
ac Analysis of the Bipolar Differential Amplifier
843(1)
Differential-Mode Gain and Input Resistance
844(2)
Common-Mode Gain and Input Resistance
846(2)
Common-Mode Rejection Ratio (CMRR)
848(1)
Analysis Using Differential- and Common-Mode Half-Circuits
849(3)
Biasing with Electronic Current Sources
852(1)
Modeling the Electronic Current Source in SPICE
853(1)
dc Analysis of the MOSFET Differential Amplifier
853(2)
Differential-Mode Input Signals
855(1)
Small-Signal Transfer Characteristic for the MOS Differential Amplifier
856(1)
Common-Mode Input Signals
856(1)
Two-Port Model for Differential Pairs
857(4)
Evolution to Basic Operational Amplifiers
861(13)
A Two-Stage Prototype for an Operational Amplifier
861(6)
Improving the Op Amp Voltage Gain
867(1)
Output Resistance Reduction
868(4)
A CMOS Operational Amplifier Prototype
872(1)
BiCMOS Amplifiers
873(1)
Output Stages
874(10)
The Source Follower---A Class-A Output Stage
874(2)
Efficiency of Class-A Amplifiers
876(1)
Class-B Push-Pull Output Stage
876(2)
Class-AB Amplifiers
878(2)
Class-AB Output Stages for Operational Amplifiers
880(1)
Short-Circuit Protection
880(1)
Transformer Coupling
881(3)
Electronic Current Sources
884(9)
Single-Transistor Current Sources
885(1)
Figure of Merit for Current Sources
885(1)
Higher Output Resistance Sources
886(1)
Current Source Design Examples
886(7)
Circuit Element Matching
893(1)
Current Mirrors
894(15)
dc Analysis of the MOS Transistor Current Mirror
894(3)
Changing the MOS Mirror Ratio
897(1)
dc Analysis of the Bipolar Transistor Current Mirror
897(2)
Altering the BJT Current Mirror Ratio
899(1)
Multiple Current Sources
900(2)
Buffered Current Mirror
902(1)
Output Resistance of the Current Mirrors
902(1)
Two-Port Model for the Current Mirror
903(3)
The Widlar Current Source
906(1)
The MOS Version of the Widlar Source
907(2)
High-Output-Resistance Current Mirrors
909(8)
The Wilson Current Sources
909(2)
Output Resistance of the Wilson Source
911(1)
Cascode Current Sources
912(1)
Output Resistance of the Cascode Sources
913(1)
Current Mirror Summary
914(3)
Reference Current Generation
917(7)
Supply-Independent Biasing
917(3)
A Supply-Independent MOS Reference Cell
920(4)
The Current Mirror As an Active Load
924(11)
CMOS Differential Amplifier with Active Load
924(7)
Bipolar Differential Amplifier with Active Load
931(4)
Active Loads in Operational Amplifiers
935(5)
CMOS Op Amp Voltage Gain
935(1)
dc Design Considerations
936(2)
Bipolar Operational Amplifiers
938(1)
Input Stage Breakdown
939(1)
The μA741 Operational Amplifier
940(45)
Bias Circuitry
941(1)
dc Analysis of the 741 Input Stage
942(3)
ac Analysis of the 741 Input Stage
945(1)
Voltage Gain of the Complete Amplifier
946(4)
The 741 Output Stage
950(2)
Output Resistance
952(1)
Short Circuit Protection
952(1)
Summary of theμA741 Operational Amplifier Characteristics
952(3)
Summary
955(2)
Key Term
957(1)
References
957(1)
Additional Reading
958(1)
Problems
958(27)
Frequency Response
985(83)
Amplifier Frequency Response
986(5)
Low-Frequency Response
987(1)
Estimating ωL in the Absence of a Dominant Pole
987(3)
High-Frequency Response
990(1)
Estimating ωH in the Absence of a Dominant Pole
990(1)
Direct Determination of the Low-Frequency Poles and Zeros-The Common-Source Amplifier
991(5)
Estimation of ωL Using the Short-Circuit Time-Constant Method
996(9)
Estimate of ωL for the Common-Emitter Amplifier
997(4)
Estimate of ωL for the Common-Source Amplifier
1001(1)
Estimate of ωL for the Common-Base Amplifier
1002(1)
Estimate of ωL for the Common-Gate Amplifier
1003(1)
Estimate of ωL for the Common-Collector Amplifier
1004(1)
Estimate of ωL for the Common-Drain Amplifier
1004(1)
Transistor Models at High Frequencies
1005(7)
Frequency-Dependent Hybrid-Pi Model for the Bipolar Transistor
1005(1)
Modeling Cπ and Cμ in SPICE
1006(1)
Unity-Gain Frequency ƒT
1006(3)
High-Frequency Model for the FET
1009(1)
Modeling CGS and CGD in SPICE
1010(1)
Channel Length Dependence of ƒT
1010(2)
Limitations of the High-Frequency Models
1012(1)
Base Resistance in the Hybrid-Pi Model
1012(3)
Effect of Base Resistance on Midband Amplifiers
1013(2)
High-Frequency Common-Emitter and Common-Source Amplifier Analysis
1015(16)
The Miller Effect
1016(1)
Common-Emitter and Common-Source Amplifier High-Frequency Response
1017(2)
Direct Analysis of the Common-Emitter Transfer Characteristic
1019(1)
Poles of the Common-Emitter Amplifier
1020(3)
Dominant Pole for the Common-Source Amplifier
1023(1)
Estimation of ωH Using the Open-Circuit Time-Constant Method
1024(3)
Common-Source Amplifier with Source Degeneration Resistance
1027(2)
Poles of the Common-Emitter with Emitter degeneration Resistance
1029(2)
Common-Base and Common-Gate Amplifier High-Frequency Response
1031(3)
Common-Collector and Common-Drain Amplifier High-Frequency Response
1034(2)
Single-Stage Amplifier High-Frequency Response Summary
1036(1)
Amplifier Gain-Bandwidth Limitations
1036(1)
Frequency Response of Multistage Amplifiers
1037(13)
Differential Amplifier
1038(1)
The Common-Collector/Common-Base Cascade
1039(2)
High-Frequency Response of the Cascode Amplifier
1041(1)
Cutoff Frequency for the Current Mirror
1042(1)
Three-Stage Amplifier Example
1043(7)
Tuned Amplifiers
1050(18)
Single-Tuned Amplifier
1050(3)
Use of a Tapped Inductor-The Auto Transformer
1053(1)
Multiple Tuned Circuits---Synchronous and Stagger Tuning
1054(2)
Summary
1056(1)
Key Terms
1057(1)
Reference
1058(1)
Problems
1058(10)
Feedback, Stability, and Oscillators
1068(102)
Classic Feedback System
1069(1)
Feedback Amplifier Design Using Two-Port Network Theory
1070(1)
Voltage Amplifiers---Series-Shunt Feedback
1071(7)
Voltage Gain Calculation
1072(2)
Input Resistance
1074(1)
Output Resistance
1074(4)
Transresistance Amplifiers---Shunt-Shunt Feedback
1078(8)
Transresistance Analysis
1079(2)
Input Resistance
1081(1)
Output Resistance
1081(5)
Current Amplifiers---Shunt-Series Feedback
1086(4)
Current Gain Calculation
1086(2)
Input Resistance
1088(1)
Output Resistance
1089(1)
Transconductance Amplifiers---Series-Series Feedback
1090(2)
Transconductance Analysis
1090(2)
Input and Output Resistances
1092(1)
Common Errors in Applying Two-Port Feedback Theory
1092(8)
Finding the Loop Gain
1100(7)
Direct Calculation of the Loop Gain
1100(2)
Finding the Loop Gain Using Successive Voltage and Current Injection
1102(3)
Simplifications
1105(2)
Blackman's Theorem to the Rescue
1107(7)
Using Feedback to Control Frequency Response
1114(2)
Stability of Feedback Amplifiers
1116(6)
The Nyquist Plot
1116(1)
First-Order Systems
1117(1)
Second-Order Systems and Phase Margin
1118(1)
Third-Order Systems and Gain Margin
1119(1)
Determining Stability from the Bode Plot
1120(2)
Single-Pole Operational Amplifier Compensation
1122(15)
Three-Stage Op Amp Analysis
1123(1)
Transmission Zeros in FET Op Amps
1124(2)
Bipolar Amplifier Compensation
1126(1)
Slew Rate of the Operational Amplifier
1127(1)
Relationships Between Slew Rate and Gain-Bandwidth Product
1128(9)
Oscillators
1137(27)
The Barkhausen Criteria for Oscillation
1137(3)
Oscillators Employing Frequency-Selective RC Networks
1140(4)
LC Oscillators
1144(2)
Crystal Oscillators
1146(5)
Summary
1151(1)
Key Terms
1152(1)
References
1152(1)
Problems
1153(11)
Appendixes
Standard Discrete Component Values
1164(3)
Solid-State Device Models and SPICE Simulation Parameters
1167(3)
Index 1170