Preface |
|
xx | |
Chapter-by-Chapter Summary |
|
xxv | |
Part One Solid-State Electronics And Devices |
|
1 | (280) |
|
Chapter 1 Introduction To Electronics |
|
|
3 | (38) |
|
1.1 A Brief History of Electronics: From Vacuum Tubes to Giga-Scale Integration |
|
|
5 | (3) |
|
1.2 Classification of Electronic Signals |
|
|
8 | (4) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.2.3 A/D and D/A Converters-Bridging the Analog and Digital Domains |
|
|
10 | (2) |
|
1.3 Notational Conventions |
|
|
12 | (1) |
|
1.4 Problem-Solving Approach |
|
|
13 | (2) |
|
1.5 Important Concepts from Circuit Theory |
|
|
15 | (6) |
|
1.5.1 Voltage and Current Division |
|
|
15 | (1) |
|
1.5.2 Thevenin and Norton Circuit Representations |
|
|
16 | (5) |
|
1.6 Frequency Spectrum of Electronic Signals |
|
|
21 | (1) |
|
|
22 | (4) |
|
1.7.1 Ideal Operational Amplifiers |
|
|
23 | (2) |
|
1.7.2 Amplifier Frequency Response |
|
|
25 | (1) |
|
1.8 Element Variations in Circuit Design |
|
|
26 | (8) |
|
1.8.1 Mathematical Modeling of Tolerances |
|
|
26 | (1) |
|
1.8.2 Worst-Case Analysis |
|
|
27 | (2) |
|
1.8.3 Monte Carlo Analysis |
|
|
29 | (3) |
|
1.8.4 Temperature Coefficients |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
36 | (5) |
|
Chapter 2 Solid-State Electronics |
|
|
41 | (31) |
|
2.1 Solid-State Electronic Materials |
|
|
43 | (1) |
|
|
44 | (3) |
|
2.3 Drift Currents and Mobility in Semiconductors |
|
|
47 | (2) |
|
|
47 | (1) |
|
|
48 | (1) |
|
2.3.3 Velocity Saturation |
|
|
48 | (1) |
|
2.4 Resistivity of Intrinsic Silicon |
|
|
49 | (1) |
|
2.5 Impurities in Semiconductors |
|
|
50 | (1) |
|
2.5.1 Donor Impurities in Silicon |
|
|
51 | (1) |
|
2.5.2 Acceptor Impurities in Silicon |
|
|
51 | (1) |
|
2.6 Electron and Hole Concentrations in Doped Semiconductors |
|
|
51 | (3) |
|
2.6.1 n-Type Material (ND > NA) |
|
|
52 | (1) |
|
2.6.2 p-Type Material (NA > ND) |
|
|
53 | (1) |
|
2.7 Mobility and Resistivity in Doped Semiconductors |
|
|
54 | (4) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (3) |
|
2.10.1 Electron-Hole Pair Generation in an Intrinsic Semiconductor |
|
|
60 | (1) |
|
2.10.2 Energy Band Model for a Doped Semiconductor |
|
|
61 | (1) |
|
2.10.3 Compensated Semiconductors |
|
|
61 | (2) |
|
2.11 Overview of Integrated Circuit Fabrication |
|
|
63 | (3) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
68 | (4) |
|
Chapter 3 Solid-State Diodes And Diode Circuits |
|
|
72 | (72) |
|
3.1 The pn Junction Diode |
|
|
73 | (5) |
|
3.1.1 pn Junction Electrostatics |
|
|
73 | (4) |
|
3.1.2 Internal Diode Currents |
|
|
77 | (1) |
|
3.2 The i-v Characteristics of the Diode |
|
|
78 | (2) |
|
3.3 The Diode Equation: A Mathematical Model for the Diode |
|
|
80 | (3) |
|
3.4 Diode Characteristics under Reverse, Zero, and Forward Bias |
|
|
83 | (3) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (2) |
|
3.5 Diode Temperature Coefficient |
|
|
86 | (1) |
|
3.6 Diodes under Reverse Bias |
|
|
86 | (4) |
|
3.6.1 Saturation Current in Real Diodes |
|
|
87 | (2) |
|
|
89 | (1) |
|
3.6.3 Diode Model for the Breakdown Region |
|
|
90 | (1) |
|
3.7 pn Junction Capacitance |
|
|
90 | (3) |
|
|
90 | (1) |
|
|
91 | (2) |
|
3.8 Schottky Barrier Diode |
|
|
93 | (1) |
|
3.9 Diode SPICE Model and Layout |
|
|
93 | (2) |
|
|
94 | (1) |
|
3.10 Diode Circuit Analysis |
|
|
95 | (10) |
|
3.10.1 Load-Line Analysis |
|
|
96 | (1) |
|
3.10.2 Analysis Using the Mathematical Model for the Diode |
|
|
97 | (4) |
|
3.10.3 The Ideal Diode Model |
|
|
101 | (2) |
|
3.10.4 Constant Voltage Drop Model |
|
|
103 | (1) |
|
3.10.5 Model Comparison and Discussion |
|
|
104 | (1) |
|
3.11 Multiple-Diode Circuits |
|
|
105 | (3) |
|
3.12 Analysis of Diodes Operating in the Breakdown Region |
|
|
108 | (4) |
|
3.12.1 Load-Line Analysis |
|
|
108 | (1) |
|
3.12.2 Analysis with the Piecewise Linear Model |
|
|
108 | (1) |
|
3.12.3 Voltage Regulation |
|
|
109 | (1) |
|
3.12.4 Analysis Including Zener Resistance |
|
|
110 | (1) |
|
3.12.5 Line and Load Regulation |
|
|
111 | (1) |
|
3.13 Half-Wave Rectifier Circuits |
|
|
112 | (10) |
|
3.13.1 Half-Wave Rectifier with Resistor Load |
|
|
112 | (1) |
|
3.13.2 Rectifier Filter Capacitor |
|
|
113 | (1) |
|
3.13.3 Half-Wave Rectifier with RC Load |
|
|
114 | (1) |
|
3.13.4 Ripple Voltage and Conduction Interval |
|
|
115 | (2) |
|
|
117 | (2) |
|
|
119 | (1) |
|
3.13.7 Peak-Inverse-Voltage (PIV) Rating |
|
|
119 | (1) |
|
3.13.8 Diode Power Dissipation |
|
|
119 | (1) |
|
3.13.9 Half-Wave Rectifier with Negative Output Voltage |
|
|
120 | (2) |
|
3.14 Full-Wave Rectifier Circuits |
|
|
122 | (1) |
|
3.14.1 Full-Wave Rectifier with Negative Output Voltage |
|
|
123 | (1) |
|
3.15 Full-Wave Bridge Rectification |
|
|
123 | (1) |
|
3.16 Rectifier Comparison and Design Tradeoffs |
|
|
124 | (4) |
|
3.17 Dynamic Switching Behavior of the Diode |
|
|
128 | (1) |
|
3.18 Photo Diodes, Solar Cells, and Light-Emitting Diodes |
|
|
129 | (3) |
|
3.18.1 Photo Diodes and Photodetectors |
|
|
129 | (1) |
|
3.18.2 Power Generation from Solar Cells |
|
|
130 | (1) |
|
3.18.3 Light-Emitting Diodes (LEDs) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
134 | (10) |
|
Chapter 4 Field-Effect Transistors |
|
|
144 | (71) |
|
4.1 Characteristics of the MOS Capacitor |
|
|
145 | (2) |
|
4.1.1 Accumulation Region |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (13) |
|
4.2.1 Qualitative i-v Behavior of the NMOS Transistor |
|
|
148 | (1) |
|
4.2.2 Triode Region Characteristics of the NMOS Transistor |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
153 | (1) |
|
4.2.5 Saturation of the i-v Characteristics |
|
|
154 | (1) |
|
4.2.6 Mathematical Model in the Saturation (Pinch-Off) Region |
|
|
155 | (1) |
|
4.2.7 Transconductance in Saturation |
|
|
156 | (1) |
|
4.2.8 Channel-Length Modulation |
|
|
156 | (1) |
|
4.2.9 Transfer Characteristics and Depletion-Mode MOSFETs |
|
|
157 | (2) |
|
4.2.10 Body Effect or Substrate Sensitivity |
|
|
159 | (1) |
|
|
160 | (2) |
|
4.4 MOSFET Circuit Symbols |
|
|
162 | (3) |
|
4.5 Capacitances in MOS Transistors |
|
|
165 | (2) |
|
4.5.1 NMOS Transistor Capacitances in the Triode Region |
|
|
165 | (1) |
|
4.5.2 Capacitances in the Saturation Region |
|
|
166 | (1) |
|
4.5.3 Capacitances in Cutoff |
|
|
166 | (1) |
|
4.6 MOSFET Modeling in SPICE |
|
|
167 | (1) |
|
4.7 MOS Transistor Scaling |
|
|
168 | (6) |
|
|
169 | (1) |
|
|
169 | (1) |
|
4.7.3 Circuit and Power Densities |
|
|
169 | (1) |
|
4.7.4 Power-Delay Product |
|
|
170 | (1) |
|
|
170 | (1) |
|
4.7.6 High Field Limitations |
|
|
171 | (1) |
|
4.7.7 The Unified MOS Transistor Model Including High Field Limitations |
|
|
172 | (1) |
|
4.7.8 Subthreshold Conduction |
|
|
173 | (1) |
|
4.8 MOS Transistor Fabrication and Layout Design Rules |
|
|
174 | (4) |
|
4.8.1 Minimum Feature Size and Alignment Tolerance |
|
|
174 | (1) |
|
4.8.2 MOS Transistor Layout |
|
|
174 | (4) |
|
4.9 Biasing the NMOS Field-Effect Transistor |
|
|
178 | (10) |
|
4.9.1 Why Do We Need Bias? |
|
|
178 | (2) |
|
4.9.2 Four-Resistor Biasing |
|
|
180 | (4) |
|
4.9.3 Constant Gate-Source Voltage Bias |
|
|
184 | (1) |
|
4.9.4 Graphical Analysis for the Q-Point |
|
|
184 | (1) |
|
4.9.5 Analysis Including Body Effect |
|
|
184 | (3) |
|
4.9.6 Analysis Using the Unified Model |
|
|
187 | (1) |
|
4.10 Biasing the PMOS Field-Effect Transistor |
|
|
188 | (2) |
|
4.11 The Junction Field-Effect Transistor (JFET) |
|
|
190 | (6) |
|
4.11.1 The JFET with Bias Applied |
|
|
191 | (2) |
|
4.11.2 JFET Channel with Drain-Source Bias |
|
|
193 | (1) |
|
4.11.3 n-Channel JFET i-v Characteristics |
|
|
193 | (2) |
|
4.11.4 The p-Channel JFET |
|
|
195 | (1) |
|
4.11.5 Circuit Symbols and JFET Model Summary |
|
|
195 | (1) |
|
|
196 | (1) |
|
4.12 JFET Modeling in Spice |
|
|
196 | (1) |
|
4.13 Biasing the JFET and Depletion-Mode MOSFET |
|
|
197 | (3) |
|
|
200 | (2) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (12) |
|
Chapter 5 Bipolar Junction Transistors |
|
|
215 | (66) |
|
5.1 Physical Structure of the Bipolar Transistor |
|
|
216 | (1) |
|
5.2 The Transport Model for the npn Transistor |
|
|
217 | (6) |
|
5.2.1 Forward Characteristics |
|
|
218 | (2) |
|
5.2.2 Reverse Characteristics |
|
|
220 | (1) |
|
5.2.3 The Complete Transport Model Equations for Arbitrary Bias Conditions |
|
|
221 | (2) |
|
|
223 | (2) |
|
5.4 Equivalent Circuit Representations for the Transport Models |
|
|
225 | (1) |
|
5.5 The i-v Characteristics of the Bipolar Transistor |
|
|
226 | (1) |
|
5.5.1 Output Characteristics |
|
|
226 | (1) |
|
5.5.2 Transfer Characteristics |
|
|
227 | (1) |
|
5.6 The Operating Regions of the Bipolar Transistor |
|
|
227 | (1) |
|
5.7 Transport Model Simplifications |
|
|
228 | (15) |
|
5.7.1 Simplified Model for the Cutoff Region |
|
|
229 | (2) |
|
5.7.2 Model Simplifications for the Forward-Active Region |
|
|
231 | (6) |
|
5.7.3 Diodes in Bipolar Integrated Circuits |
|
|
237 | (1) |
|
5.7.4 Simplified Model for the Reverse-Active Region |
|
|
238 | (2) |
|
5.7.5 Modeling Operation in the Saturation Region |
|
|
240 | (3) |
|
5.8 Non ideal Behavior of the Bipolar Transistor |
|
|
243 | (7) |
|
5.8.1 Junction Breakdown Voltages |
|
|
244 | (1) |
|
5.8.2 Minority-Carrier Transport in the Base Region |
|
|
244 | (1) |
|
|
245 | (2) |
|
5.8.4 Diffusion Capacitance |
|
|
247 | (1) |
|
5.8.5 Frequency Dependence of the Common-Emitter Current Gain |
|
|
248 | (1) |
|
5.8.6 The Early Effect and Early Voltage |
|
|
248 | (1) |
|
5.8.7 Modeling the Early Effect |
|
|
249 | (1) |
|
5.8.8 Origin of the Early Effect |
|
|
249 | (1) |
|
|
250 | (1) |
|
5.10 Bipolar Technology and SPICE Model |
|
|
251 | (3) |
|
5.10.1 Qualitative Description |
|
|
251 | (1) |
|
5.10.2 SPICE Model Equations |
|
|
252 | (1) |
|
5.10.3 High-Performance Bipolar Transistors |
|
|
253 | (1) |
|
5.11 Practical Bias Circuits for the BJT |
|
|
254 | (8) |
|
5.11.1 Four-Resistor Bias Network |
|
|
256 | (2) |
|
5.11.2 Design Objectives for the Four-Resistor Bias Network |
|
|
258 | (4) |
|
5.11.3 Iterative Analysis of the Four-Resistor Bias Circuit |
|
|
262 | (1) |
|
5.12 Tolerances in Bias Circuits |
|
|
262 | (6) |
|
5.12.1 Worst-Case Analysis |
|
|
263 | (2) |
|
5.12.2 Monte Carlo Analysis |
|
|
265 | (3) |
|
|
268 | (2) |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
271 | (10) |
Part Two Digital Electronics |
|
281 | (234) |
|
Chapter 6 Introduction To Digital Electronics |
|
|
283 | (76) |
|
|
285 | (1) |
|
6.2 Logic Level Definitions and Noise Margins |
|
|
285 | (4) |
|
6.2.1 Logic Voltage Levels |
|
|
287 | (1) |
|
|
287 | (1) |
|
6.2.3 Logic Gate Design Goals |
|
|
288 | (1) |
|
6.3 Dynamic Response of Logic Gates |
|
|
289 | (2) |
|
6.3.1 Rise Time and Fall Time |
|
|
289 | (1) |
|
|
290 | (1) |
|
6.3.3 Power-Delay Product |
|
|
290 | (1) |
|
6.4 Review of Boolean Algebra |
|
|
291 | (2) |
|
|
293 | (9) |
|
6.5.1 NMOS Inverter with Resistive Load |
|
|
294 | (1) |
|
6.5.2 Design of the W/L Ratio of Ms |
|
|
295 | (1) |
|
6.5.3 Load Resistor Design |
|
|
296 | (1) |
|
6.5.4 Load-Line Visualization |
|
|
296 | (2) |
|
6.5.5 On-Resistance of the Switching Device |
|
|
298 | (1) |
|
6.5.6 Noise Margin Analysis |
|
|
299 | (1) |
|
6.5.7 Calculation of VIL and VOH |
|
|
299 | (1) |
|
6.5.8 Calculation of VIH and VOL |
|
|
300 | (1) |
|
6.5.9 Resistor Load Inverter Noise Margins |
|
|
300 | (1) |
|
6.5.10 Load Resistor Problems |
|
|
301 | (1) |
|
6.6 Transistor Alternatives to the Load Resistor |
|
|
302 | (13) |
|
6.6.1 The NMOS Saturated Load Inverter |
|
|
303 | (8) |
|
6.6.2 NMOS Inverter with a Linear Load Device |
|
|
311 | (1) |
|
6.6.3 NMOS Inverter with a Depletion-Mode Load |
|
|
312 | (3) |
|
6.7 NMOS Inverter Summary and Comparison |
|
|
315 | (1) |
|
6.8 Impact of Velocity Saturation on Static Inverter Design |
|
|
316 | (1) |
|
6.8.1 Switching Transistor Design |
|
|
316 | (1) |
|
6.8.2 Load Transistor Design |
|
|
316 | (1) |
|
6.8.3 Velocity Saturation Impact Summary |
|
|
317 | (1) |
|
6.9 NMOS NAND and NOR Gates |
|
|
317 | (4) |
|
|
318 | (1) |
|
|
319 | (1) |
|
6.9.3 NOR and NAND Gate Layouts in NMOS Depletion-Mode Technology |
|
|
320 | (1) |
|
6.10 Complex NMOS Logic Design |
|
|
321 | (5) |
|
|
326 | (3) |
|
6.11.1 Static Power Dissipation |
|
|
326 | (1) |
|
6.11.2 Dynamic Power Dissipation |
|
|
327 | (1) |
|
6.11.3 Power Scaling in MOS Logic Gates |
|
|
328 | (1) |
|
6.12 Dynamic Behavior of MOS Logic Gates |
|
|
329 | (12) |
|
6.12.1 Capacitances in Logic Circuits |
|
|
330 | (1) |
|
6.12.2 Dynamic Response of the NMOS Inverter with a Resistive Load |
|
|
331 | (5) |
|
6.12.3 Comparison of NMOS Inverter Delays |
|
|
336 | (1) |
|
6.12.4 Impact of Velocity Saturation on Inverter Delays |
|
|
337 | (1) |
|
6.12.5 Scaling Based upon Reference Circuit Simulation |
|
|
337 | (1) |
|
6.12.6 Ring Oscillator Measurement of Intrinsic Gate Delay |
|
|
338 | (1) |
|
6.12.7 Unloaded Inverter Delay |
|
|
338 | (3) |
|
|
341 | (3) |
|
|
341 | (2) |
|
6.13.2 NOR and NAND Gates |
|
|
343 | (1) |
|
|
344 | (2) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
347 | (1) |
|
|
347 | (12) |
|
Chapter 7 Complementary MOS (CMOS) Logic Design |
|
|
359 | (55) |
|
7.1 CMOS Inverter Technology |
|
|
360 | (2) |
|
7.1.1 CMOS Inverter Layout |
|
|
362 | (1) |
|
7.2 Static Characteristics of the CMOS Inverter |
|
|
362 | (5) |
|
7.2.1 CMOS Voltage Transfer Characteristics |
|
|
363 | (2) |
|
7.2.2 Noise Margins for the CMOS Inverter |
|
|
365 | (2) |
|
7.3 Dynamic Behavior of the CMOS Inverter |
|
|
367 | (6) |
|
7.3.1 Propagation Delay Estimate |
|
|
367 | (2) |
|
7.3.2 Rise and Fall Times |
|
|
369 | (1) |
|
7.3.3 Performance Scaling |
|
|
369 | (2) |
|
7.3.4 Impact of Velocity Saturation on CMOS Inverter Delays |
|
|
371 | (1) |
|
7.3.5 Delay of Cascaded Inverters |
|
|
372 | (1) |
|
7.4 Power Dissipation and Power Delay Product in CMOS |
|
|
373 | (4) |
|
7.4.1 Static Power Dissipation |
|
|
373 | (1) |
|
7.4.2 Dynamic Power Dissipation |
|
|
374 | (1) |
|
7.4.3 Power-Delay Product |
|
|
375 | (2) |
|
7.5 CMOS NOR and NAND Gates |
|
|
377 | (4) |
|
|
377 | (3) |
|
|
380 | (1) |
|
7.6 Design of Complex Gates in CMOS |
|
|
381 | (6) |
|
7.7 Minimum Size Gate Design and Performance |
|
|
387 | (2) |
|
|
389 | (3) |
|
7.8.1 Cascade Buffer Delay Model |
|
|
389 | (1) |
|
7.8.2 Optimum Number of Stages |
|
|
390 | (2) |
|
7.9 The CMOS Transmission Gate |
|
|
392 | (1) |
|
|
393 | (4) |
|
7.10.1 The Bistable Latch |
|
|
393 | (3) |
|
|
396 | (1) |
|
7.10.3 The D-Latch Using Transmission Gates |
|
|
397 | (1) |
|
7.10.4 A Master-Slave D Flip-Flop |
|
|
397 | (1) |
|
|
397 | (5) |
|
|
402 | (1) |
|
|
403 | (1) |
|
|
404 | (1) |
|
|
404 | (10) |
|
Chapter 8 MOS Memory Circuits |
|
|
414 | (41) |
|
8.1 Random-Access Memory (RAM) |
|
|
415 | (2) |
|
8.1.1 Random-Access Memory (RAM) Architecture |
|
|
415 | (1) |
|
8.1.2 A 256-Mb Memory Chip |
|
|
416 | (1) |
|
|
417 | (7) |
|
8.2.1 Memory Cell Isolation and Access-the 6-T Cell |
|
|
417 | (1) |
|
|
418 | (4) |
|
8.2.3 Writing Data into the 6-T Cell |
|
|
422 | (2) |
|
|
424 | (6) |
|
8.3.1 The One-Transistor Cell |
|
|
425 | (1) |
|
8.3.2 Data Storage in the 1-T Cell |
|
|
425 | (2) |
|
8.3.3 Reading Data from the 1-T Cell |
|
|
427 | (1) |
|
8.3.4 The Four-Transistor Cell |
|
|
428 | (2) |
|
|
430 | (6) |
|
8.4.1 A Sense Amplifier for the 6-T Cell |
|
|
430 | (2) |
|
8.4.2 A Sense Amplifier for the 1-T Cell |
|
|
432 | (1) |
|
8.4.3 The Boosted Wordline Circuit |
|
|
433 | (1) |
|
8.4.4 Clocked CMOS Sense Amplifiers |
|
|
434 | (2) |
|
|
436 | (3) |
|
|
436 | (1) |
|
|
436 | (2) |
|
8.5.3 Pass-Transistor Column Decoder |
|
|
438 | (1) |
|
8.6 Read-Only Memory (ROM) |
|
|
439 | (3) |
|
|
442 | (5) |
|
8.7.1 Floating Gate Technology |
|
|
442 | (3) |
|
8.7.2 NOR Circuit Implementations |
|
|
445 | (1) |
|
8.7.3 NAND Implementations |
|
|
445 | (2) |
|
|
447 | (1) |
|
|
448 | (1) |
|
|
449 | (1) |
|
|
449 | (6) |
|
Chapter 9 Bipolar Logic Circuits |
|
|
455 | (60) |
|
9.1 The Current Switch (Emitter-Coupled Pair) |
|
|
456 | (3) |
|
9.1.1 Mathematical Model for Static Behavior of the Current Switch |
|
|
456 | (2) |
|
9.1.2 Current Switch Analysis for VI > VREF |
|
|
458 | (1) |
|
9.1.3 Current Switch Analysis for VI < VREF |
|
|
459 | (1) |
|
9.2 The Emitter-Coupled Logic (ECL) Gate |
|
|
459 | (3) |
|
9.2.1 ECL Gate with VI = VH |
|
|
460 | (1) |
|
9.2.2 ECL Gate with VI = VL |
|
|
461 | (1) |
|
9.2.3 Input Current of the ECL Gate |
|
|
461 | (1) |
|
|
461 | (1) |
|
9.3 Noise Margin Analysis for the ECL Gate |
|
|
462 | (2) |
|
9.3.1 VIL, VOH, VIH, and VOL |
|
|
462 | (1) |
|
|
463 | (1) |
|
9.4 Current Source Implementation |
|
|
464 | (2) |
|
|
466 | (2) |
|
|
468 | (3) |
|
9.6.1 Emitter Follower with a Load Resistor |
|
|
469 | (2) |
|
9.7 "Emitter Dotting" or "Wired-OR" Logic |
|
|
471 | (1) |
|
9.7.1 Parallel Connection of Emitter-Follower Outputs |
|
|
472 | (1) |
|
9.7.2 The Wired-OR Logic Function |
|
|
472 | (1) |
|
9.8 ECL Power-Delay Characteristics |
|
|
472 | (4) |
|
|
472 | (2) |
|
|
474 | (1) |
|
9.8.3 Power-Delay Product |
|
|
475 | (1) |
|
|
476 | (1) |
|
|
476 | (7) |
|
|
477 | (1) |
|
|
478 | (1) |
|
9.10.3 VEE Supply Voltage |
|
|
478 | (1) |
|
|
479 | (1) |
|
9.10.5 CML Power Reduction |
|
|
480 | (1) |
|
9.10.6 Source-Coupled Fet Logic (SCFL) |
|
|
480 | (3) |
|
9.11 The Saturating Bipolar Inverter |
|
|
483 | (7) |
|
9.11.1 Static Inverter Characteristics |
|
|
483 | (1) |
|
9.11.2 Saturation Voltage of the Bipolar Transistor |
|
|
484 | (2) |
|
9.11.3 Load-Line Visualization |
|
|
486 | (1) |
|
9.11.4 Switching Characteristics of the Saturated BJT |
|
|
487 | (3) |
|
9.12 A Transistor-Transistor Logic (TTL) |
|
|
490 | (4) |
|
9.12.1 TTL Inverter Analysis for VI = VL |
|
|
490 | (2) |
|
9.12.2 Analysis for VI = VH |
|
|
492 | (1) |
|
|
493 | (1) |
|
9.12.4 TTL Propagation Delay and Power-Delay Product |
|
|
493 | (1) |
|
9.12.5 TTL Voltage Transfer Characteristic and Noise Margins |
|
|
494 | (1) |
|
9.12.6 Fanout Limitations of Standard TTL |
|
|
494 | (1) |
|
9.13 Logic Functions in TTL |
|
|
494 | (3) |
|
9.13.1 Multi-Emitter Input Transistors |
|
|
495 | (1) |
|
|
495 | (1) |
|
9.13.3 Input Clamping Diodes |
|
|
496 | (1) |
|
9.14 Schottky-Clamped TTL |
|
|
497 | (1) |
|
9.15 Comparison of the Power-Delay Products of ECL and TTL |
|
|
498 | (1) |
|
|
498 | (5) |
|
|
499 | (2) |
|
|
501 | (1) |
|
9.16.3 BiCMOS Logic Gates |
|
|
502 | (1) |
|
|
503 | (1) |
|
|
504 | (1) |
|
|
505 | (1) |
|
|
505 | (1) |
|
|
505 | (10) |
Part Three Analog Electronics |
|
515 | (776) |
|
Chapter 10 Analog Systems And Ideal Operational Amplifiers |
|
|
517 | (70) |
|
10.1 An Example of an Analog Electronic System |
|
|
518 | (1) |
|
|
519 | (6) |
|
|
520 | (1) |
|
|
521 | (1) |
|
|
521 | (1) |
|
|
522 | (3) |
|
10.3 Two-Port Models for Amplifiers |
|
|
525 | (4) |
|
|
525 | (4) |
|
10.4 Mismatched Source and Load Resistances |
|
|
529 | (3) |
|
10.5 Introduction to Operational Amplifiers |
|
|
532 | (4) |
|
10.5.1 The Differential Amplifier |
|
|
532 | (1) |
|
10.5.2 Differential Amplifier Voltage Transfer Characteristic |
|
|
533 | (1) |
|
|
533 | (3) |
|
10.6 Distortion in Amplifiers |
|
|
536 | (1) |
|
10.7 Differential Amplifier Model |
|
|
537 | (2) |
|
10.8 Ideal Differential and Operational Amplifiers |
|
|
539 | (1) |
|
10.8.1 Assumptions for Ideal Operational Amplifier Analysis |
|
|
539 | (1) |
|
10.9 Analysis of Circuits Containing Ideal Operational Amplifiers |
|
|
540 | (15) |
|
10.9.1 The Inverting Amplifier |
|
|
541 | (3) |
|
10.9.2 The Transresistance Amplifier-a Current-to-Voltage Converter |
|
|
544 | (2) |
|
10.9.3 The Noninverting Amplifier |
|
|
546 | (2) |
|
10.9.4 The Unity-Gain Buffer, or Voltage Follower |
|
|
548 | (3) |
|
10.9.5 The Summing Amplifier |
|
|
551 | (2) |
|
10.9.6 The Difference Amplifier |
|
|
553 | (2) |
|
10.10 Frequency Dependent Feedback |
|
|
555 | (19) |
|
|
556 | (1) |
|
10.10.2 The Low-Pass Amplifier |
|
|
556 | (3) |
|
10.10.3 The High-Pass Amplifier |
|
|
559 | (3) |
|
10.10.4 Band-Pass Amplifiers |
|
|
562 | (3) |
|
10.10.5 An Active Low-Pass Filter |
|
|
565 | (4) |
|
10.10.6 An Active High-Pass Filter |
|
|
569 | (1) |
|
|
570 | (3) |
|
10.10.8 The Differentiator |
|
|
573 | (1) |
|
|
574 | (1) |
|
|
575 | (1) |
|
|
576 | (1) |
|
|
576 | (1) |
|
|
576 | (11) |
|
Chapter 11 Nonideal Operational Amplifiers And Feedback Amplifier Stability |
|
|
587 | (98) |
|
11.1 Classic Feedback Systems |
|
|
588 | (2) |
|
11.1.1 Closed-Loop Gain Analysis |
|
|
589 | (1) |
|
|
589 | (1) |
|
11.2 Analysis of Circuits Containing Nonideal Operational Amplifiers |
|
|
590 | (12) |
|
11.2.1 Finite Open-Loop Gain |
|
|
590 | (3) |
|
11.2.2 Nonzero Output Resistance |
|
|
593 | (4) |
|
11.2.3 Finite Input Resistance |
|
|
597 | (4) |
|
11.2.4 Summary of Nonideal Inverting and Noninverting Amplifiers |
|
|
601 | (1) |
|
11.3 Series and Shunt Feedback Circuits |
|
|
602 | (1) |
|
11.3.1 Feedback Amplifier Categories |
|
|
602 | (1) |
|
11.3.2 Voltage Amplifiers-Series-Shunt Feedback |
|
|
603 | (1) |
|
11.3.3 Transimpedance Amplifiers-Shunt-Shunt Feedback |
|
|
603 | (1) |
|
11.3.4 Current Amplifiers-Shunt-Series Feedback |
|
|
603 | (1) |
|
11.3.5 Transconductance Amplifiers-Series-Series Feedback |
|
|
603 | (1) |
|
11.4 Unified Approach to Feedback Amplifier Gain Calculation |
|
|
603 | (1) |
|
11.4.1 Closed-Loop Gain Analysis |
|
|
604 | (1) |
|
11.4.2 Resistance Calculations Using Blackman's Theorem |
|
|
604 | (1) |
|
11.5 Series-Shunt Feedback-Voltage Amplifiers |
|
|
604 | (7) |
|
11.5.1 Closed-Loop Gain Calculation |
|
|
605 | (1) |
|
11.5.2 Input Resistance Calculations |
|
|
605 | (1) |
|
11.5.3 Output Resistance Calculations |
|
|
606 | (1) |
|
11.5.4 Series-Shunt Feedback Amplifier Summary |
|
|
607 | (4) |
|
11.6 Shunt-Shunt Feedback-Transresistance Amplifiers |
|
|
611 | (5) |
|
11.6.1 Closed-Loop Gain Calculation |
|
|
611 | (1) |
|
11.6.2 Input Resistance Calculations |
|
|
612 | (1) |
|
11.6.3 Output Resistance Calculations |
|
|
612 | (1) |
|
11.6.4 Shunt-Shunt Feedback Amplifier Summary |
|
|
613 | (3) |
|
11.7 Series-Series Feedback-Transconductance Amplifiers |
|
|
616 | (4) |
|
11.7.1 Closed-Loop Gain Calculation |
|
|
617 | (1) |
|
11.7.2 Input Resistance Calculation |
|
|
617 | (1) |
|
11.7.3 Output Resistance Calculation |
|
|
618 | (1) |
|
11.7.4 Series-Series Feedback Amplifier Summary |
|
|
618 | (2) |
|
11.8 Shunt-Series Feedback-Current Amplifiers |
|
|
620 | (5) |
|
11.8.1 Closed-Loop Gain Calculation |
|
|
621 | (1) |
|
11.8.2 Input Resistance Calculation |
|
|
621 | (1) |
|
11.8.3 Output Resistance Calculation |
|
|
622 | (1) |
|
11.8.4 Series-Series Feedback Amplifier Summary |
|
|
622 | (3) |
|
11.9 Finding the Loop Gain Using Successive Voltage and Current Injection |
|
|
625 | (3) |
|
|
628 | (1) |
|
11.10 Distortion Reduction through the Use of Feedback |
|
|
628 | (1) |
|
11.11 dc Error Sources and Output Range Limitations |
|
|
629 | (8) |
|
11.11.1 Input-Offset Voltage |
|
|
629 | (2) |
|
11.11.2 Offset-Voltage Adjustment |
|
|
631 | (1) |
|
11.11.3 Input-Bias and Offset Currents |
|
|
632 | (2) |
|
11.11.4 Output Voltage and Current Limits |
|
|
634 | (3) |
|
11.12 Common-Mode Rejection and Input Resistance |
|
|
637 | (10) |
|
11.12.1 Finite Common-Mode Rejection Ratio |
|
|
637 | (1) |
|
11.12.2 Why Is CMRR Important? |
|
|
638 | (3) |
|
11.12.3 Voltage-Follower Gain Error due to CMRR |
|
|
641 | (3) |
|
11.12.4 Common-Mode Input Resistance |
|
|
644 | (1) |
|
11.12.5 An Alternate Interpretation of CMRR |
|
|
645 | (1) |
|
11.12.6 Power Supply Rejection Ratio |
|
|
645 | (2) |
|
11.13 Frequency Response and Bandwidth of Operational Amplifiers |
|
|
647 | (12) |
|
11.13.1 Frequency Response of the Noninverting Amplifier |
|
|
649 | (3) |
|
11.13.2 Inverting Amplifier Frequency Response |
|
|
652 | (2) |
|
11.13.3 Using Feedback to Control Frequency Response |
|
|
654 | (2) |
|
11.13.4 Large-Signal Limitations-Slew Rate and Full-Power Bandwidth |
|
|
656 | (1) |
|
11.13.5 Macro Model for Operational Amplifier Frequency Response |
|
|
657 | (1) |
|
11.13.6 Complete Op Amp Macro Models in SPICE |
|
|
658 | (1) |
|
11.13.7 Examples of Commercial General-Purpose Operational Amplifiers |
|
|
658 | (1) |
|
11.14 Stability of Feedback Amplifiers |
|
|
659 | (11) |
|
|
659 | (1) |
|
11.14.2 First-Order Systems |
|
|
660 | (1) |
|
11.14.3 Second-Order Systems and Phase Margin |
|
|
661 | (1) |
|
11.14.4 Step Response and Phase Margin |
|
|
662 | (3) |
|
11.14.5 Third-Order Systems and Gain Margin |
|
|
665 | (1) |
|
11.14.6 Determining Stability from the Bode Plot |
|
|
666 | (4) |
|
|
670 | (2) |
|
|
672 | (1) |
|
|
672 | (1) |
|
|
673 | (12) |
|
Chapter 12 Operational Amplifier Applications |
|
|
685 | (85) |
|
|
686 | (13) |
|
12.1.1 Two-Port Representations |
|
|
686 | (2) |
|
12.1.2 Amplifier Terminology Review |
|
|
688 | (3) |
|
12.1.3 Frequency Response of Cascaded Amplifiers |
|
|
691 | (8) |
|
12.2 The Instrumentation Amplifier |
|
|
699 | (3) |
|
|
702 | (10) |
|
|
702 | (4) |
|
12.3.2 A High-Pass Filter with Gain |
|
|
706 | (2) |
|
|
708 | (2) |
|
|
710 | (1) |
|
12.3.5 Magnitude and Frequency Scaling |
|
|
711 | (1) |
|
12.4 Switched-Capacitor Circuits |
|
|
712 | (7) |
|
12.4.1 A Switched-Capacitor Integrator |
|
|
712 | (2) |
|
12.4.2 Noninverting SC Integrator |
|
|
714 | (2) |
|
12.4.3 Switched-Capacitor Filters |
|
|
716 | (3) |
|
12.5 Digital-to-Analog Conversion |
|
|
719 | (7) |
|
12.5.1 D/A Converter Fundamentals |
|
|
719 | (1) |
|
12.5.2 D/A Converter Errors |
|
|
720 | (2) |
|
12.5.3 Digital-to-Analog Converter Circuits |
|
|
722 | (4) |
|
12.6 Analog-to-Digital Conversion |
|
|
726 | (14) |
|
12.6.1 A/D Converter Fundamentals |
|
|
727 | (1) |
|
12.6.2 Analog-to-Digital Converter Errors |
|
|
728 | (1) |
|
12.6.3 Basic A/D Conversion Techniques |
|
|
729 | (11) |
|
|
740 | (5) |
|
12.7.1 The Barkhausen Criteria for Oscillation |
|
|
740 | (1) |
|
12.7.2 Oscillators Employing Frequency-Selective RC Networks |
|
|
741 | (4) |
|
12.8 Nonlinear Circuit Applications |
|
|
745 | (3) |
|
12.8.1 A Precision Half-Wave Rectifier |
|
|
745 | (1) |
|
12.8.2 Nonsaturating Precision-Rectifier Circuit |
|
|
746 | (2) |
|
12.9 Circuits Using Positive Feedback |
|
|
748 | (7) |
|
12.9.1 The Comparator and Schmitt Trigger |
|
|
748 | (2) |
|
12.9.2 The Astable Multivibrator |
|
|
750 | (1) |
|
12.9.3 The Monostable Multivibrator or One Shot |
|
|
751 | (4) |
|
|
755 | (2) |
|
|
757 | (1) |
|
|
758 | (1) |
|
|
758 | (12) |
|
Chapter 13 Small-Signal Modeling And Linear Amplification |
|
|
770 | (71) |
|
13.1 The Transistor as an Amplifier |
|
|
771 | (3) |
|
|
772 | (1) |
|
13.1.2 The MOSFET Amplifier |
|
|
773 | (1) |
|
13.2 Coupling and Bypass Capacitors |
|
|
774 | (2) |
|
13.3 Circuit Analysis Using dc and ac Equivalent Circuits |
|
|
776 | (4) |
|
13.3.1 Menu for dc and ac Analysis |
|
|
776 | (4) |
|
13.4 Introduction to Small-Signal Modeling |
|
|
780 | (3) |
|
13.4.1 Graphical Interpretation of the Small-Signal Behavior of the Diode |
|
|
780 | (1) |
|
13.4.2 Small-Signal Modeling of the Diode |
|
|
781 | (2) |
|
13.5 Small-Signal Models for Bipolar Junction Transistors |
|
|
783 | (9) |
|
13.5.1 The Hybrid-Pi Model |
|
|
785 | (1) |
|
13.5.2 Graphical Interpretation of the Transconductance |
|
|
786 | (1) |
|
13.5.3 Small-Signal Current Gain |
|
|
786 | (1) |
|
13.5.4 The Intrinsic Voltage Gain of the BJT |
|
|
787 | (1) |
|
13.5.5 Equivalent Forms of the Small-Signal Model |
|
|
788 | (1) |
|
13.5.6 Simplified Hybrid Pi Model |
|
|
789 | (1) |
|
13.5.7 Definition of a Small Signal for the Bipolar Transistor |
|
|
789 | (2) |
|
13.5.8 Small-Signal Model for the pnp Transistor |
|
|
791 | (1) |
|
13.5.9 ac Analysis versus Transient Analysis in SPICE |
|
|
792 | (1) |
|
13.6 The Common-Emitter (C-E) Amplifier |
|
|
792 | (2) |
|
13.6.1 Terminal Voltage Gain |
|
|
792 | (2) |
|
|
794 | (1) |
|
13.6.3 Signal Source Voltage Gain |
|
|
794 | (1) |
|
13.7 Important Limits and Model Simplifications |
|
|
794 | (5) |
|
13.7.1 A Design Guide for the Common-Emitter Amplifier |
|
|
795 | (1) |
|
13.7.2 Upper Bound on the Common-Emitter Gain |
|
|
796 | (1) |
|
13.7.3 Small-Signal Limit for the Common-Emitter Amplifier |
|
|
796 | (3) |
|
13.8 Small-Signal Models for Field-Effect Transistors |
|
|
799 | (7) |
|
13.8.1 Small-Signal Model for the MOSFET |
|
|
799 | (2) |
|
13.8.2 Intrinsic Voltage Gain of the MOSFET |
|
|
801 | (1) |
|
13.8.3 Definition of Small-Signal Operation for the MOSFET |
|
|
802 | (1) |
|
13.8.4 Body Effect in the Four-Terminal MOSFET |
|
|
803 | (1) |
|
13.8.5 Small-Signal Model for the PMOS Transistor |
|
|
804 | (1) |
|
13.8.6 Small-Signal Model for the Junction Field-Effect Transistor |
|
|
805 | (1) |
|
13.9 Summary and Comparison of the Small-Signal Models of the BJT and FET |
|
|
806 | (3) |
|
13.10 The Common-Source Amplifier |
|
|
809 | (13) |
|
13.10.1 Common-Source Terminal Voltage Gain |
|
|
810 | (1) |
|
13.10.2 Signal Source Voltage Gain for the Common-Source Amplifier |
|
|
810 | (1) |
|
13.10.3 A Design Guide for the Common-Source Amplifier |
|
|
810 | (1) |
|
13.10.4 Small-Signal Limit for the Common-Source Amplifier |
|
|
811 | (2) |
|
13.10.5 Input Resistances of the Common-Emitter and Common-Source Amplifiers |
|
|
813 | (3) |
|
13.10.6 Common-Emitter and Common-Source Output Resistances |
|
|
816 | (6) |
|
13.10.7 Comparison of the Three Amplifier Examples |
|
|
822 | (1) |
|
13.11 Common-Emitter and Common-Source Amplifier Summary |
|
|
822 | (1) |
|
13.11.1 Guidelines for Neglecting the Transistor Output Resistance |
|
|
823 | (1) |
|
13.12 Amplifier Power and Signal Range |
|
|
823 | (4) |
|
13.12.1 Power Dissipation |
|
|
823 | (1) |
|
|
824 | (3) |
|
|
827 | (1) |
|
|
828 | (1) |
|
|
829 | (12) |
|
Chapter 14 Single-Transistor Amplifiers |
|
|
841 | (111) |
|
14.1 Amplifier Classification |
|
|
842 | (6) |
|
14.1.1 Signal Injection and Extraction-the BJT |
|
|
842 | (1) |
|
14.1.2 Signal Injection and Extraction-the FET |
|
|
843 | (1) |
|
14.1.3 Common-Emitter (C-E) and Common-Source (C-S) Amplifiers |
|
|
844 | (1) |
|
14.1.4 Common-Collector (C-C) and Common-Drain (C-D) Topologies |
|
|
845 | (2) |
|
14.1.5 Common-Base (C-B) and Common-Gate (C-G) Amplifiers |
|
|
847 | (1) |
|
14.1.6 Small-Signal Model Review |
|
|
848 | (1) |
|
14.2 Inverting Amplifiers-Common-Emitter and Common-Source Circuits |
|
|
848 | (22) |
|
14.2.1 The Common-Emitter (C-E) Amplifier |
|
|
848 | (13) |
|
14.2.2 Common-Emitter Example Comparison |
|
|
861 | (1) |
|
14.2.3 The Common-Source Amplifier |
|
|
861 | (3) |
|
14.2.4 Small-Signal Limit for the Common-Source Amplifier |
|
|
864 | (4) |
|
14.2.5 Common-Emitter and Common-Source Amplifier Characteristics |
|
|
868 | (1) |
|
14.2.6 C-E/C-S Amplifier Summary |
|
|
869 | (1) |
|
14.2.7 Equivalent Transistor Representation of the Generalized C-E/C-S Transistor |
|
|
869 | (1) |
|
14.3 Follower Circuits-Common-Collector and Common-Drain Amplifiers |
|
|
870 | (8) |
|
14.3.1 Terminal Voltage Gain |
|
|
870 | (1) |
|
|
871 | (1) |
|
14.3.3 Signal Source Voltage Gain |
|
|
872 | (1) |
|
14.3.4 Follower Signal Range |
|
|
872 | (1) |
|
14.3.5 Follower Output Resistance |
|
|
873 | (1) |
|
|
874 | (1) |
|
14.3.7 C-C/C-D Amplifier Summary |
|
|
874 | (4) |
|
14.4 Noninverting Amplifiers-Common-Base and Common-Gate Circuits |
|
|
878 | (9) |
|
14.4.1 Terminal Voltage Gain and Input Resistance |
|
|
879 | (1) |
|
14.4.2 Signal Source Voltage Gain |
|
|
880 | (1) |
|
14.4.3 Input Signal Range |
|
|
881 | (1) |
|
14.4.4 Resistance at the Collector and Drain Terminals |
|
|
881 | (1) |
|
|
882 | (1) |
|
14.4.6 Overall Input and Output Resistances for the Noninverting Amplifiers |
|
|
883 | (3) |
|
14.4.7 C-B/C-G Amplifier Summary |
|
|
886 | (1) |
|
14.5 Amplifier Prototype Review and Comparison |
|
|
887 | (4) |
|
14.5.1 The BJT Amplifiers |
|
|
887 | (2) |
|
14.5.2 The FET Amplifiers |
|
|
889 | (2) |
|
14.6 Common-Source Amplifiers Using MOS Inverters |
|
|
891 | (7) |
|
14.6.1 Voltage Gain Estimate |
|
|
892 | (1) |
|
|
893 | (1) |
|
|
894 | (1) |
|
14.6.4 Input and Output Resistances |
|
|
895 | (3) |
|
14.7 Coupling and Bypass Capacitor Design |
|
|
898 | (11) |
|
14.7.1 Common-Emitter and Common-Source Amplifiers |
|
|
898 | (5) |
|
14.7.2 Common-Collector and Common-Drain Amplifiers |
|
|
903 | (2) |
|
14.7.3 Common-Base and Common-Gate Amplifiers |
|
|
905 | (3) |
|
14.7.4 Setting Lower Cutoff Frequency fL |
|
|
908 | (1) |
|
14.8 Amplifier Design Examples |
|
|
909 | (14) |
|
14.8.1 Monte Carlo Evaluation of the Common-Base Amplifier Design |
|
|
918 | (5) |
|
14.9 Multistage ac-Coupled Amplifiers |
|
|
923 | (11) |
|
14.9.1 A Three-Stage ac-Coupled Amplifier |
|
|
923 | (2) |
|
|
925 | (2) |
|
|
927 | (1) |
|
14.9.4 Signal Source Voltage Gain |
|
|
927 | (1) |
|
|
927 | (1) |
|
14.9.6 Current and Power Gain |
|
|
928 | (1) |
|
14.9.7 Input Signal Range |
|
|
929 | (3) |
|
14.9.8 Estimating the Lower Cutoff Frequency of the Multistage Amplifier |
|
|
932 | (2) |
|
|
934 | (1) |
|
|
935 | (1) |
|
|
936 | (1) |
|
|
936 | (16) |
|
Chapter 15 Differential Amplifiers And Operational Amplifier Design |
|
|
952 | (79) |
|
15.1 Differential Amplifiers |
|
|
953 | (23) |
|
15.1.1 Bipolar and MOS Differential Amplifiers |
|
|
953 | (1) |
|
15.1.2 dc Analysis of the Bipolar Differential Amplifier |
|
|
954 | (2) |
|
15.1.3 Transfer Characteristic for the Bipolar Differential Amplifier |
|
|
956 | (1) |
|
15.1.4 ac Analysis of the Bipolar Differential Amplifier |
|
|
957 | (1) |
|
15.1.5 Differential-Mode Gain and Input and Output Resistances |
|
|
958 | (2) |
|
15.1.6 Common-Mode Gain and Input Resistance |
|
|
960 | (2) |
|
15.1.7 Common-Mode Rejection Ratio (CMRR) |
|
|
962 | (1) |
|
15.1.8 Analysis Using Differential- and Common-Mode Half-Circuits |
|
|
963 | (3) |
|
15.1.9 Biasing with Electronic Current Sources |
|
|
966 | (1) |
|
15.1.10 Modeling the Electronic Current Source in SPICE |
|
|
967 | (1) |
|
15.1.11 dc Analysis of the MOSFET Differential Amplifier |
|
|
967 | (3) |
|
15.1.12 Differential-Mode Input Signals |
|
|
970 | (1) |
|
15.1.13 Small-Signal Transfer Characteristic for the MOS Differential Amplifier |
|
|
971 | (1) |
|
15.1.14 Common-Mode Input Signals |
|
|
971 | (1) |
|
15.1.15 Model for Differential Pairs |
|
|
972 | (4) |
|
15.2 Evolution to Basic Operational Amplifiers |
|
|
976 | (16) |
|
15.2.1 A Two-Stage Prototype for an Operational Amplifier |
|
|
977 | (5) |
|
15.2.2 Improving the Op Amp Voltage Gain |
|
|
982 | (1) |
|
|
983 | (1) |
|
15.2.4 Output Resistance Reduction |
|
|
984 | (4) |
|
15.2.5 A CMOS Operational Amplifier Prototype |
|
|
988 | (2) |
|
|
990 | (1) |
|
15.2.7 All Transistor Implementations |
|
|
990 | (2) |
|
|
992 | (10) |
|
15.3.1 The Source Follower-a Class-A Output Stage |
|
|
992 | (1) |
|
15.3.2 Efficiency of Class-A Amplifiers |
|
|
993 | (1) |
|
15.3.3 Class-B Push-Pull Output Stage |
|
|
994 | (2) |
|
15.3.4 Class-AB Amplifiers |
|
|
996 | (1) |
|
15.3.5 Class-AB Output Stages for Operational Amplifiers |
|
|
997 | (1) |
|
15.3.6 Short-Circuit Protection |
|
|
997 | (2) |
|
15.3.7 Transformer Coupling |
|
|
999 | (3) |
|
15.4 Electronic Current Sources |
|
|
1002 | (11) |
|
15.4.1 Single-Transistor Current Sources |
|
|
1003 | (1) |
|
15.4.2 Figure of Merit for Current Sources |
|
|
1003 | (1) |
|
15.4.3 Higher Output Resistance Sources |
|
|
1004 | (1) |
|
15.4.4 Current Source Design Examples |
|
|
1005 | (8) |
|
|
1013 | (1) |
|
|
1014 | (1) |
|
|
1015 | (1) |
|
|
1015 | (1) |
|
|
1015 | (16) |
|
Chapter 16 Analog Integrated Circuit Design Techniques |
|
|
1031 | (82) |
|
16.1 Circuit Element Matching |
|
|
1032 | (1) |
|
|
1033 | (15) |
|
16.2.1 dc Analysis of the MOS Transistor Current Mirror |
|
|
1034 | (2) |
|
16.2.2 Changing the MOS Mirror Ratio |
|
|
1036 | (1) |
|
16.2.3 dc Analysis of the Bipolar Transistor Current Mirror |
|
|
1037 | (2) |
|
16.2.4 Altering the BJT Current Mirror Ratio |
|
|
1039 | (1) |
|
16.2.5 Multiple Current Sources |
|
|
1040 | (1) |
|
16.2.6 Buffered Current Mirror |
|
|
1041 | (1) |
|
16.2.7 Output Resistance of the Current Mirrors |
|
|
1042 | (1) |
|
16.2.8 Two-Port Model for the Current Mirror |
|
|
1043 | (2) |
|
16.2.9 The Widlar Current Source |
|
|
1045 | (3) |
|
16.2.10 The MOS Version of the Widlar Source |
|
|
1048 | (1) |
|
16.3 High-Output-Resistance Current Mirrors |
|
|
1048 | (9) |
|
16.3.1 The Wilson Current Sources |
|
|
10491 | |
|
16.3.2 Output Resistance of the Wilson Source |
|
|
1050 | (1) |
|
16.3.3 Cascode Current Sources |
|
|
1051 | (1) |
|
16.3.4 Output Resistance of the Cascode Sources |
|
|
1052 | (1) |
|
16.3.5 Regulated Cascode Current Source |
|
|
1053 | (1) |
|
16.3.6 Current Mirror Summary |
|
|
1054 | (3) |
|
16.4 Reference Current Generation |
|
|
1057 | (1) |
|
16.5 Supply-Independent Biasing |
|
|
1058 | (4) |
|
16.5.1 A VBE-Based Reference |
|
|
1058 | (1) |
|
|
1058 | (1) |
|
16.5.3 Power-Supply-Independent Bias Cell |
|
|
1059 | (1) |
|
16.5.4 A Supply-Independent MOS Reference Cell |
|
|
1060 | (2) |
|
16.6 The Bandgap Reference |
|
|
1062 | (4) |
|
16.7 The Current Mirror as an Active Load |
|
|
1066 | (11) |
|
16.7.1 CMOS Differential Amplifier with Active Load |
|
|
1066 | (7) |
|
16.7.2 Bipolar Differential Amplifier with Active Load |
|
|
1073 | (4) |
|
16.8 Active Loads in Operational Amplifiers |
|
|
1077 | (5) |
|
16.8.1 CMOS Op Amp Voltage Gain |
|
|
1077 | (1) |
|
16.8.2 dc Design Considerations |
|
|
1078 | (2) |
|
16.8.3 Bipolar Operational Amplifiers |
|
|
1080 | (1) |
|
16.8.4 Input Stage Breakdown |
|
|
1081 | (1) |
|
16.9 The µA741 Operational Amplifier |
|
|
1082 | (13) |
|
16.9.1 Overall Circuit Operation |
|
|
1082 | (1) |
|
|
1083 | (1) |
|
16.9.3 dc Analysis of the 741 Input Stage |
|
|
1084 | (3) |
|
16.9.4 ac Analysis of the 741 Input Stage |
|
|
1087 | (1) |
|
16.9.5 Voltage Gain of the Complete Amplifier |
|
|
1088 | (4) |
|
16.9.6 The 741 Output Stage |
|
|
1092 | (2) |
|
|
1094 | (1) |
|
16.9.8 Short-Circuit Protection |
|
|
1094 | (1) |
|
16.9.9 Summary of the µA741 Operational Amplifier Characteristics |
|
|
1094 | (1) |
|
16.10 The Gilbert Analog Multiplier |
|
|
1095 | (2) |
|
|
1097 | (1) |
|
|
1098 | (1) |
|
|
1099 | (1) |
|
|
1099 | (14) |
|
Chapter 17 Amplifier Frequency Response |
|
|
1113 | (104) |
|
17.1 Amplifier Frequency Response |
|
|
1114 | (5) |
|
17.1.1 Low-Frequency Response |
|
|
1115 | (1) |
|
17.1.2 Estimating (ωL in the Absence of a Dominant Pole |
|
|
1115 | (3) |
|
17.1.3 High-Frequency Response |
|
|
1118 | (1) |
|
17.1.4 Estimating wH in the Absence of a Dominant Pole |
|
|
1118 | (1) |
|
17.2 Direct Determination of the Low-Frequency Poles and Zeros-the Common-Source Amplifier |
|
|
1119 | (5) |
|
17.3 Estimation of (ωL Using the Short-Circuit Time-Constant Method |
|
|
1124 | (9) |
|
17.3.1 Estimate of ωL for the Common-Emitter Amplifier |
|
|
1125 | (4) |
|
17.3.2 Estimate of ωL for the Common-Source Amplifier |
|
|
1129 | (1) |
|
17.3.3 Estimate of ωL for the Common-Base Amplifier |
|
|
1130 | (1) |
|
17.3.4 Estimate of ωL for the Common-Gate Amplifier |
|
|
1131 | (1) |
|
17.3.5 Estimate of ωL for the Common-Collector Amplifier |
|
|
1132 | (1) |
|
17.3.6 Estimate of ωL for the Common-Drain Amplifier |
|
|
1132 | (1) |
|
17.4 Transistor Models at High Frequencies |
|
|
1133 | (7) |
|
17.4.1 Frequency-Dependent Hybrid-Pi Model for the Bipolar Transistor |
|
|
1133 | (1) |
|
17.4.2 Modeling Cπ and Cµ in SPICE |
|
|
1134 | (1) |
|
17.4.3 Unity-Gain Frequency fT |
|
|
1134 | (3) |
|
17.4.4 High-Frequency Model for the FET |
|
|
1137 | (1) |
|
17.4.5 Modeling CGS and CGD in SPICE |
|
|
1138 | (1) |
|
17.4.6 Channel Length Dependence of fT |
|
|
1138 | (2) |
|
17.4.7 Limitations of the High-Frequency Models |
|
|
1140 | (1) |
|
17.5 Base and Gate Resistances in the Small-Signal Models |
|
|
1140 | (2) |
|
17.5.1 Effect of Base and Gate Resistances on Midband Amplifiers |
|
|
1141 | (1) |
|
17.6 High-Frequency Common-Emitter and Common-Source Amplifier Analysis |
|
|
1142 | (18) |
|
|
1144 | (2) |
|
17.6.2 Common-Emitter and Common-Source Amplifier High-Frequency Response |
|
|
1146 | (2) |
|
17.6.3 Direct Analysis of the Common-Emitter Transfer Characteristic |
|
|
1148 | (1) |
|
17.6.4 Poles of the Common-Emitter Amplifier |
|
|
1149 | (3) |
|
17.6.5 Dominant Pole for the Common-Source Amplifier |
|
|
1152 | (2) |
|
17.6.6 Estimation of ωH Using the Open-Circuit Time-Constant Method |
|
|
1154 | (1) |
|
17.6.7 Common-Source Amplifier with Source Degeneration Resistance |
|
|
1155 | (2) |
|
17.6.8 Poles of the Common-Emitter with Emitter Degeneration Resistance |
|
|
1157 | (3) |
|
17.7 Common-Base and Common-Gate Amplifier High-Frequency Response |
|
|
1160 | (2) |
|
17.8 Common-Collector and Common-Drain Amplifier High-Frequency Response |
|
|
1162 | (4) |
|
17.8.1 Frequency Response of the Complementary Emitter Follower |
|
|
1165 | (1) |
|
17.9 Single-Stage Amplifier High-Frequency Response Summary |
|
|
1166 | (2) |
|
17.9.1 Amplifier Gain-Bandwidth Limitations |
|
|
1167 | (1) |
|
17.10 Frequency Response of Multistage Amplifiers |
|
|
1168 | (13) |
|
17.10.1 Differential Amplifier |
|
|
1168 | (2) |
|
17.10.2 The Common-Collector/Common-Base Cascade |
|
|
1170 | (1) |
|
17.10.3 High-Frequency Response of the Cascode Amplifier |
|
|
1171 | (1) |
|
17.10.4 Cutoff Frequency for the Current Mirror |
|
|
1172 | (1) |
|
17.10.5 Three-Stage Amplifier Example |
|
|
1173 | (8) |
|
17.11 Introduction to Radio Frequency Circuits |
|
|
1181 | (12) |
|
17.11.1 Radio Frequency Amplifiers |
|
|
1182 | (1) |
|
17.11.2 The Shunt-Peaked Amplifier |
|
|
1182 | (2) |
|
17.11.3 Single-Tuned Amplifier |
|
|
1184 | (2) |
|
17.11.4 Use of a Tapped Inductor-the Auto Transformer |
|
|
1186 | (2) |
|
17.11.5 Multiple Tuned Circuits-Synchronous and Stagger Tuning |
|
|
1188 | (1) |
|
17.11.6 Common-Source Amplifier with Inductive Degeneration |
|
|
1189 | (4) |
|
17.12 Mixers and Balanced Modulators |
|
|
1193 | (10) |
|
17.12.1 Introduction to Mixer Operation |
|
|
1193 | (1) |
|
17.12.2 A Single-Balanced Mixer |
|
|
1194 | (1) |
|
17.12.3 The Differential Pair as a Single-Balanced Mixer |
|
|
1195 | (2) |
|
17.12.4 A Double-Balanced Mixer |
|
|
1197 | (2) |
|
17.12.5 The Jones Mixer-a Double-Balanced Mixer/Modulator |
|
|
1199 | (4) |
|
|
1203 | (1) |
|
|
1204 | (1) |
|
|
1204 | (1) |
|
|
1205 | (12) |
|
Chapter 18 Transistor Feedback Amplifiers And Oscillators |
|
|
1217 | (74) |
|
18.1 Basic Feedback System Review |
|
|
1218 | (3) |
|
|
1218 | (1) |
|
18.1.2 Closed-Loop Impedances |
|
|
1219 | (1) |
|
|
1219 | (2) |
|
18.2 Feedback Amplifier Analysis at Midband |
|
|
1221 | (3) |
|
|
1221 | (1) |
|
|
1222 | (1) |
|
|
1222 | (1) |
|
18.2.4 Offset Voltage Calculation |
|
|
1223 | (1) |
|
18.3 Feedback Amplifier Circuit Examples |
|
|
1224 | (20) |
|
18.3.1 Series-Shunt Feedback-Voltage Amplifiers |
|
|
1224 | (5) |
|
18.3.2 Differential Input Series-Shunt Voltage Amplifier |
|
|
1229 | (3) |
|
18.3.3 Shunt-Shunt Feedback-Transresistance Amplifiers |
|
|
1232 | (6) |
|
18.3.4 Series-Series Feedback-Transconductance Amplifiers |
|
|
1238 | (3) |
|
18.3.5 Shunt-Series Feedback-Current Amplifiers |
|
|
1241 | (3) |
|
18.4 Review of Feedback Amplifier Stability |
|
|
1244 | (9) |
|
18.4.1 Closed-Loop Response of the Uncompensated Amplifier |
|
|
1245 | (1) |
|
|
1246 | (4) |
|
18.4.3 Higher Order Effects |
|
|
1250 | (1) |
|
18.4.4 Response of the Compensated Amplifier |
|
|
1251 | (2) |
|
18.4.5 Small-Signal Limitations |
|
|
1253 | (1) |
|
18.5 Single-Pole Operational Amplifier Compensation |
|
|
1253 | (15) |
|
18.5.1 Three-Stage Op-Amp Analysis |
|
|
1254 | (2) |
|
18.5.2 Transmission Zeros in FET Op Amps |
|
|
1256 | (1) |
|
18.5.3 Bipolar Amplifier Compensation |
|
|
1257 | (1) |
|
18.5.4 Slew Rate of the Operational Amplifier |
|
|
1258 | (1) |
|
18.5.5 Relationships between Slew Rate and Gain-Bandwidth Product |
|
|
1259 | (9) |
|
18.6 High-Frequency Oscillators |
|
|
1268 | (10) |
|
18.6.1 The Colpitts Oscillator |
|
|
1269 | (1) |
|
18.6.2 The Hartley Oscillator |
|
|
1270 | (1) |
|
18.6.3 Amplitude Stabilization in LC Oscillators |
|
|
1271 | (1) |
|
18.6.4 Negative Resistance in Oscillators |
|
|
1271 | (1) |
|
18.6.5 Negative Gm Oscillator |
|
|
1272 | (2) |
|
18.6.6 Crystal Oscillators |
|
|
1274 | (4) |
|
|
1278 | (2) |
|
|
1280 | (1) |
|
|
1280 | (1) |
|
|
1280 | |
Appendices |
|
|
A Standard Discrete Component Values |
|
|
1291 | (3) |
|
B Solid-State Device Models and SPICE Simulation Parameters |
|
|
1294 | (5) |
|
|
1299 | (4) |
Index |
|
1303 | |