Muutke küpsiste eelistusi

Microwave and RF Semiconductor Control Device Modeling Unabridged edition [Kõva köide]

  • Formaat: Hardback, 290 pages
  • Ilmumisaeg: 31-Jan-2016
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1630810215
  • ISBN-13: 9781630810214
  • Formaat: Hardback, 290 pages
  • Ilmumisaeg: 31-Jan-2016
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1630810215
  • ISBN-13: 9781630810214
This comprehensive new resource presents a detailed look at the modeling and simulation of microwave semiconductor control devices and circuits. Fundamental PIN, MOSFET, and MESFET nonlinear device modeling are discussed, including the analysis of transient and harmonic behavior. Considering various control circuit topologies, the book analyzes a wide range of models, from simple approximations, to sophisticated analytical approaches.Readers find clear examples that provide guidance in how to use specific modeling techniques for their challenging projects in the field. Numerous illustrations help practitioners better understand important device and circuit behavior, revealing the relationship between key parameters and results. This authoritative volume covers basic and complex mathematical models for the most common semiconductor control elements used in today's microwave and RF circuits and systems.
Preface xi
Acknowledgments xiii
Chapter 1 Introduction 1(38)
1.1 Historical Perspective and Background
1(2)
1.1.1 Simplified Switch Concepts
2(1)
1.2 General Control Circuit Terminology and Operation
3(8)
1.2.1 Switching Quality Factor (Q)
3(3)
1.2.2 Circuit Analysis
6(2)
1.2.3 Control Circuit Power Handling
8(2)
1.2.4 Definition of Control Circuit Terms
10(1)
1.3 Circuits
11(17)
1.3.1 Reflective Switches and Attenuators
11(6)
1.3.2 Matched Attenuators
17(3)
1.3.3 Phase Shifters
20(8)
1.4 Noise
28(5)
1.4.1 Resistive Noise Model
28(2)
1.4.2 Noise Figure Model
30(2)
1.4.3 Cascade System Noise
32(1)
1.5 Control Elements
33(2)
1.5.1 PIN Diode Control Elements
33(1)
1.5.2 FET-Based Control Elements
34(1)
1.6 Additional Information
35(1)
References
36(3)
Chapter 2 Nonideal Device Behavior in Control Circuits 39(26)
2.1 Control Device Parasitics
39(12)
2.1.1 Device Packages
40(7)
2.1.2 Interconnections (On-Chip)
47(4)
2.2 Modeling Thermal Behavior
51(4)
2.2.1 Thermal Resistance
51(3)
2.2.2 Thermal Time Constant
54(1)
2.3 Device Nonlinearity
55(7)
2.3.1 Origin of Nonlinearity
56(1)
2.3.2 Order of Nonlinearity
57(5)
References
62(3)
Chapter 3 Modeling PIN diodes—Linear Behavior 65(36)
3.1 Introduction
65(1)
3.2 PIN Diode Modeling—Simple
65(9)
3.2.1 Simple Lumped Element Modeling
65(4)
3.2.2 Forward Bias Operation
69(2)
3.2.3 Reverse Bias Operation
71(3)
3.3 PIN Diode Equivalent Circuit Models
74(3)
3.3.1 Lumped Element Model
75(1)
3.3.2 Current and Voltage-Dependent Models
75(2)
3.4 Integral-Based PIN Diode Model—Forward Bias
77(11)
3.4.1 Linear Modeling—One Dimensional
79(3)
3.4.2 Recombination in the Heavily Doped Regions
82(1)
3.4.3 I-Region Charge Density
83(3)
3.4.4 Linear Modeling—Multidimensional
86(2)
3.5 PIN Diode Impedance as a Function of Frequency
88(7)
3.5.1 PIN Diode Impedance Versus Frequency: Mathematical Analysis
88(4)
3.5.2 Carrier Lifetime Measurement
92(1)
3.5.3 Effects of Temperature on PIN Diode Impedance
93(2)
3.6 PIN Diode Reverse Bias Modeling
95(3)
References
98(3)
Chapter 4 Modeling PIN Diodes—Nonlinear and Time Domain Behavior 101(30)
4.1 Introduction
101(1)
4.2 PIN Diode Forward Bias Distortion
101(11)
4.2.1 Detailed Mathematical Modeling
101(3)
4.2.2 PIN Diode Distortion at High Frequencies
104(8)
4.3 PIN Diode Reverse Bias Distortion
112(3)
4.4 Minimum Reverse Bias in High-Power Applications
115(4)
4.5 Time Domain Models
119(10)
4.5.1 SPICE Model—Isothermal
119(6)
4.5.2 SPICE Model—Electrothermal
125(4)
4.5.3 Comments on SPICE Simulations
129(1)
References
129(2)
Chapter 5 Modeling MOSFET Control Devices 131(28)
5.1 Introduction
131(1)
5.2 Review of CMOS Technology
131(3)
5.2.1 The CMOS Physical Structure
131(2)
5.2.2 Technology Scaling
133(1)
5.3 Current-Voltage (I-V) Characteristics of the nMOSFET RF Control Device
134(5)
5.3.1 I-V Characteristics
136(1)
5.3.2 RF On-State Resistance
136(2)
5.3.3 Bulk Resistance
138(1)
5.3.4 RF Off-State Resistance
139(1)
5.4 Detailed Capacitance Characteristics
139(7)
5.4.1 Intrinsic Device Capacitance Origin
139(2)
5.4.2 Multiple Gate Fingers
141(1)
5.4.3 RF Equivalent Circuit
142(1)
5.4.4 RF Bulk Node Effects
142(2)
5.4.5 Silicon on Insulator (SOI)
144(1)
5.4.6 Packaging Parasitics
145(1)
5.5 Detailed MOS Control Device Characteristics
146(6)
5.5.1 High Field Effects in MOSFET Control Devices
146(1)
5.5.2 Gate Resistance
146(2)
5.5.3 Nonlinear Operation in the On-State
148(2)
5.5.4 Nonlinear Operation in the Off-State
150(1)
5.5.5 MOS Stacking
151(1)
5.5.6 Thermal Modeling
151(1)
5.6 SPICE/BSIM Models: SPICE Levels 1 through 3 and BSIM models
152(4)
5.6.1 SPICE Level 3
152(1)
5.6.2 BSIM Parameters
153(1)
5.6.3 SPICE Simulation Example
154(2)
References
156(3)
Chapter 6 Modeling MESFET and HEMT Control Devices 159(30)
6.1 Introduction
159(1)
6.2 Review of Bulk MESFET Technology
160(8)
6.2.1 Current-voltage (I-V) Characteristics of the Bulk MESFET RF Control Device
161(4)
6.2.2 RF On-State Resistance
165(2)
6.2.3 RF Off-State Resistance
167(1)
6.3 MESFET Capacitance Characteristics
168(5)
6.3.1 Intrinsic Device Capacitance Origin
168(1)
6.3.2 RF Equivalent Circuit
169(2)
6.3.3 Packaging Considerations
171(1)
6.3.4 Gate Resistance, RG
171(1)
6.3.5 Equivalent Circuit Simulation
172(1)
6.4 HEMT Technologies
173(4)
6.4.1 HEMT On-State Resistance
176(1)
6.4.2 HEMT Capacitance Characteristics
176(1)
6.5 Detailed MESFET/HEMT Control Device Characteristics
177(5)
6.5.1 Nonlinear Operation in the On-State MESFET/HEMT
177(3)
6.5.2 Nonlinear Operation in the Off-State
180(2)
6.6 SPICE Modeling
182(3)
6.6.1 SPICE MESFET (Statz) Model
182(2)
6.6.2 SPICE Simulation Example
184(1)
References
185(4)
Chapter 7 Switch and Switched Circuit Applications 189(38)
7.1 Transmit/Receive (TR) Switches
189(3)
7.1.1 Introduction
190(1)
7.1.2 Basic Switching Structures
191(1)
7.2 Specific TR Switches
192(30)
7.2.1 Two-Device SPDT TR Switch
192(17)
7.2.2 Four-Device SPDT TR Switch with Improved Isolation
209(6)
7.2.3 Tuned λ/4 Transmission Line SPDT TR Switches
215(3)
7.2.4 Linear Balanced Duplexer-Based Switch for Magnetic Resonance Imaging (MRI)
218(4)
7.3 Switched Passive Element for Tuning and Matching
222(3)
7.3.1 Capacitor and Inductor Bank Switching
223(2)
References
225(2)
Chapter 8 Control and Attenuator Applications 227(30)
8.1 Introduction
227(1)
8.2 Attenuators
227(19)
8.2.1 Reflective Attenuator
228(9)
8.2.2 Π-Connected Matched Attenuator
237(9)
8.3 Microwave and RF Limiters
246(4)
8.3.1 PIN Diode Limiter Pair
249(1)
8.3.2 MOSFET Limiter
250(1)
8.4 Phase Shifters
250(4)
References
254(3)
Author Biography 257(2)
Index 259
Robert H. Caverly is a professor at Villanova University in the department of electrical and computer engineering. Previously, he was affiliated with the University of Massachusetts Dartmouth. He received his Ph.D. in electrical engineering from Johns Hopkins University.