Muutke küpsiste eelistusi

Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees [Pehme köide]

  • Formaat: Paperback / softback, 90 pages, kõrgus x laius: 254x178 mm, kaal: 195 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 30-Jan-2021
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470441624
  • ISBN-13: 9781470441623
Teised raamatud teemal:
  • Formaat: Paperback / softback, 90 pages, kõrgus x laius: 254x178 mm, kaal: 195 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 30-Jan-2021
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470441624
  • ISBN-13: 9781470441623
Teised raamatud teemal:
Two of the central concepts for the study of degree structures in computability theory are computably enumerable degrees and minimal degrees. For strong notions of reducibility, such as $m$-deducibility or truth table reducibility, it is possible for computably enumerable degrees to be minimal. For weaker notions of reducibility, such as weak truth table reducibility or Turing reducibility, it is not possible to combine these properties in a single degree.

This book considers how minimal weak truth table degrees interact with computably enumerable Turing degrees and obtain three main results. First, there are sets with minimal weak truth table degree which bound noncomputable computably enumerable sets under Turing reducibility. Second, no set with computable enumerable Turing degree can have minimal weak truth table degree. Third, no $\Delta^0_2$ set which Turing bounds a promptly simple set can have minimal weak truth table degree.
Rodney G. Downey, Victoria University of Wellington, New Zealand.

Keng Meng NgNanyang Technological University, Singapore.

Reed Solomon, University of Connecticut, Storrs, CT USA.