Muutke küpsiste eelistusi

Mobile Context Awareness 2012 [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 188 pages, kõrgus x laius: 235x155 mm, kaal: 471 g, XII, 188 p., 1 Hardback
  • Ilmumisaeg: 23-Apr-2012
  • Kirjastus: Springer London Ltd
  • ISBN-10: 0857296248
  • ISBN-13: 9780857296245
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 188 pages, kõrgus x laius: 235x155 mm, kaal: 471 g, XII, 188 p., 1 Hardback
  • Ilmumisaeg: 23-Apr-2012
  • Kirjastus: Springer London Ltd
  • ISBN-10: 0857296248
  • ISBN-13: 9780857296245
Teised raamatud teemal:
Mobile context-awareness is a popular research trend in the field of ubiquitous computing. Advances in mobile device sensory hardware and the rise of 'virtual' sensors such as web application programming interfaces (APIs) mean that the mobile user is exposed to a vast range of data that can be used for new advanced applications. Mobile Context Awareness presents work from industrial and academic researchers, focusing on novel methods of context acquisition in the mobile environment – particularly through the use of physical and virtual sensors – along with research into new applications utilising this context. In addition, the book provides insights into the technical and usability challenges involved in mobile context-awareness, as well as observations on current and future trends in the field.

This book explores the application of machine learning techiques to problems of classification, showing how they can be decomposed into much simpler sub-problems, and demonstrating how this approach often leads to improved classification performance.
Foreword.- Introduction.- Modeling Success, Failure, and Intent of
Multi-Agent Activities Under Severe Noise.- Energy Accuracy Trade-offs of
Sensor Sampling in Smart Phone based Sensing Systems.- Acceleration Noise
Correction for Transfer Inference Using Accelerometers on Mobile Devices.-
Mobile Sensing of Users Motion and Position Context for Automatic Check-in
Suggestion and Validation.- The Case for Context-Aware Resources Management
in Mobile Operating Systems.- A Scalable Sensor Middleware for Social
End-User Programming.- Mobile Context-Aware Support for Public Transportation
Systems.- Quality Sensitive Web Service Profiling and Discovery: In support
of Mobile and Pervasive Applications.- A Middleware Supporting Adaptive and
Context-Aware Mobile Applications.