Muutke küpsiste eelistusi

Model-Based Processing for Underwater Acoustic Arrays 2015 ed. [Pehme köide]

  • Formaat: Paperback / softback, 113 pages, kõrgus x laius: 235x155 mm, kaal: 2226 g, 14 Illustrations, color; 11 Illustrations, black and white; X, 113 p. 25 illus., 14 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Physics
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319175564
  • ISBN-13: 9783319175560
  • Pehme köide
  • Hind: 62,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 73,64 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 113 pages, kõrgus x laius: 235x155 mm, kaal: 2226 g, 14 Illustrations, color; 11 Illustrations, black and white; X, 113 p. 25 illus., 14 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Physics
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319175564
  • ISBN-13: 9783319175560

This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducinga priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.

1 Introduction
1(8)
1.1 Background
1(1)
1.2 The Inverse Problem
1(3)
1.3 Model-Based Processing
4(2)
1.4 Observability
6(1)
1.5 Book Outline
7(2)
References
7(2)
2 The Acoustic Array
9(18)
2.1 The Acoustic Array
9(1)
2.2 The Line Array
10(3)
2.3 Beamforming
13(4)
2.3.1 Delay and Sum Beamforming
13(1)
2.3.2 Phase Shift Beamforming and the k -- ω Beamformer
14(2)
2.3.3 Beam Patterns
16(1)
2.4 Array Gain and the Directivity Index
17(4)
2.4.1 Limitations of the Directivity Index
20(1)
2.5 Array Optimization
21(1)
2.6 Bearing Estimation
22(1)
2.7 Three-Dimensional Arrays
23(4)
References
25(2)
3 Statistical Signal Processing Overview
27(24)
3.1 Introduction
27(1)
3.2 Detection Theory for Totally Known Signals
27(3)
3.3 Classical Estimation Theory
30(1)
3.4 The Cramer--Rao Lower Bound
31(2)
3.5 Estimator Structure
33(6)
3.5.1 The Minimum Variance Unbiased Estimator
34(1)
3.5.2 The Non-white Minimum Variance Unbiased Estimator
35(1)
3.5.3 Best Linear Unbiased Estimator
36(1)
3.5.4 The Maximum Likelihood Estimator
37(2)
3.6 Bayesian Estimators
39(3)
3.7 Recursive Estimator Structures
42(4)
3.7.1 Estimation of the Mean of a Growing Data Set
43(1)
3.7.2 Further Generalizations
44(2)
3.8 The Linear Kalman Filter Algorithm
46(5)
3.8.1 Preliminary Comments
46(1)
3.8.2 The Algorithm
47(1)
3.8.3 Discussion
47(1)
References
48(3)
4 From Bayes to Kalman
51(24)
4.1 Introduction
51(1)
4.2 The Bayesian Filter: Preliminaries
52(1)
4.3 The Bayesian Filter
53(3)
4.3.1 The Particle Filter
54(2)
4.3.2 Comments
56(1)
4.4 The Kalman Filter
56(19)
4.4.1 The Kalman Algorithm
61(1)
4.4.2 Some Comments
62(1)
4.4.3 The Nonlinear Case
62(2)
4.4.4 The Unscented Kalman Filter
64(5)
4.4.5 The UKF Algorithm
69(3)
4.4.6 A Walk Through the UKF Algorithm
72(1)
References
73(2)
5 Applications
75(30)
5.1 Introduction
75(1)
5.2 The Narrowband Towed Line Array
75(14)
5.2.1 Model-Based Bearing Estimation with a Towed Array
78(5)
5.2.2 The Single Hydrophone Case
83(1)
5.2.3 Joint Bearing and Range Estimation
84(5)
5.3 The Broadband Problem
89(8)
5.3.1 Frequency Domain Broadband Array Processor: Theory
90(3)
5.3.2 The Algorithm
93(1)
5.3.3 Experimental Results
94(3)
5.4 Model-Based Localization
97(8)
References
104(1)
6 Filter Tuning and Solution Testing
105(6)
6.1 Discussion
105(1)
6.2 Tuning the Filter
105(2)
6.3 Assessing Solution Quality
107(4)
6.3.1 Innovation Sequence Zero Mean Test
107(1)
6.3.2 Innovation Sequence Whiteness Test
108(1)
References
109(2)
Index 111