Preface |
|
xi | |
|
|
1 | (11) |
|
1.1 Overview of the Problem |
|
|
2 | (4) |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.2 General Tracking System Prototype |
|
|
6 | (2) |
|
1.3 The Tracking Pipeline |
|
|
8 | (4) |
|
|
12 | (43) |
|
|
13 | (13) |
|
2.1.1 Internal Camera Model |
|
|
13 | (3) |
|
2.1.2 Nonlinear Distortion |
|
|
16 | (1) |
|
2.1.3 External Camera Parameters |
|
|
17 | (1) |
|
2.1.4 Uncalibrated Models |
|
|
18 | (2) |
|
|
20 | (6) |
|
|
26 | (13) |
|
2.2.1 Shape Model and Pose Parameters |
|
|
26 | (8) |
|
|
34 | (3) |
|
2.2.3 Learning an Active Shape or Appearance Model |
|
|
37 | (2) |
|
2.3 Mapping Between Object and Sensor Spaces |
|
|
39 | (4) |
|
|
40 | (1) |
|
|
41 | (2) |
|
|
43 | (12) |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
49 | (1) |
|
2.4.4 State Updating Rules |
|
|
50 | (2) |
|
|
52 | (3) |
|
3 The Visual Modality Abstraction |
|
|
55 | (23) |
|
|
55 | (2) |
|
3.2 Sampling and Updating Reference Features |
|
|
57 | (2) |
|
3.3 Model Matching with the Image Data |
|
|
59 | (11) |
|
3.3.1 Pixel-Level Measurements |
|
|
62 | (2) |
|
3.3.2 Feature-Level Measurements |
|
|
64 | (3) |
|
3.3.3 Object-Level Measurements |
|
|
67 | (1) |
|
3.3.4 Handling Mutual Occlusions |
|
|
68 | (2) |
|
3.3.5 Multiresolution Processing for Improving Robustness |
|
|
70 | (1) |
|
3.4 Data Fusion Across Multiple Modalities and Cameras |
|
|
70 | (8) |
|
|
71 | (1) |
|
|
71 | (1) |
|
3.4.3 Static and Dynamic Measurement Fusion |
|
|
72 | (5) |
|
3.4.4 Building a Visual Processing Tree |
|
|
77 | (1) |
|
4 Examples Of Visual Modalities |
|
|
78 | (84) |
|
|
79 | (14) |
|
|
80 | (5) |
|
4.1.2 Representing Color Distributions |
|
|
85 | (4) |
|
4.1.3 Model-Based Color Matching |
|
|
89 | (1) |
|
4.1.4 Kernel-Based Segmentation and Tracking |
|
|
90 | (3) |
|
4.2 Background Subtraction |
|
|
93 | (3) |
|
|
96 | (16) |
|
|
97 | (7) |
|
4.3.2 Blob Matching Using Variational Approaches |
|
|
104 | (8) |
|
|
112 | (14) |
|
|
114 | (5) |
|
|
119 | (3) |
|
4.4.3 Local Color Statistics |
|
|
122 | (4) |
|
|
126 | (14) |
|
4.5.1 Wide-Baseline Matching |
|
|
128 | (1) |
|
|
129 | (4) |
|
4.5.3 Scale-Invariant Keypoints |
|
|
133 | (5) |
|
4.5.4 Matching Strategies for Invariant Keypoints |
|
|
138 | (2) |
|
|
140 | (7) |
|
4.6.1 Motion History Images |
|
|
140 | (2) |
|
|
142 | (5) |
|
|
147 | (15) |
|
4.7.1 Pose Estimation with AAM |
|
|
151 | (7) |
|
4.7.2 Pose Estimation with Mutual Information |
|
|
158 | (4) |
|
5 Recursive State-Space Estimation |
|
|
162 | (35) |
|
5.1 Target-State Distribution |
|
|
163 | (3) |
|
5.2 MLE and MAP Estimation |
|
|
166 | (6) |
|
5.2.1 Least-Squares Estimation |
|
|
167 | (1) |
|
5.2.2 Robust Least-Squares Estimation |
|
|
168 | (4) |
|
|
172 | (8) |
|
5.3.1 Kalman and Information Filters |
|
|
172 | (1) |
|
5.3.2 Extended Kalman and Information Filters |
|
|
173 | (3) |
|
5.3.3 Unscented Kalman and Information Filters |
|
|
176 | (4) |
|
|
180 | (12) |
|
5.4.1 SIR Particle Filter |
|
|
181 | (4) |
|
5.4.2 Partitioned Sampling |
|
|
185 | (2) |
|
5.4.3 Annealed Particle Filter |
|
|
187 | (2) |
|
5.4.4 MCMC Particle Filter |
|
|
189 | (3) |
|
|
192 | (5) |
|
6 Examples Of Target Detectors |
|
|
197 | (17) |
|
|
198 | (4) |
|
6.1.1 Localization with Three-Dimensional Triangulation |
|
|
199 | (3) |
|
|
202 | (2) |
|
6.2.1 AdaBoost Algorithm for Object Detection |
|
|
202 | (1) |
|
6.2.2 Example: Face Detection |
|
|
203 | (1) |
|
|
204 | (4) |
|
|
208 | (3) |
|
|
211 | (3) |
|
7 Building Applications With Opentl |
|
|
214 | (37) |
|
7.1 Functional Architecture of OpenTL |
|
|
214 | (2) |
|
7.1.1 Multithreading Capabilities |
|
|
216 | (1) |
|
7.2 Building a Tutorial Application with OpenTL |
|
|
216 | (24) |
|
7.2.1 Setting the Camera Input and Video Output |
|
|
217 | (3) |
|
7.2.2 Pose Representation and Model Projection |
|
|
220 | (4) |
|
7.2.3 Shape and Appearance Model |
|
|
224 | (3) |
|
7.2.4 Setting the Color-Based Likelihood |
|
|
227 | (5) |
|
7.2.5 Setting the Particle Filter and Tracking the Object |
|
|
232 | (3) |
|
7.2.6 Tracking Multiple Targets |
|
|
235 | (2) |
|
7.2.7 Multimodal Measurement Fusion |
|
|
237 | (3) |
|
7.3 Other Application Examples |
|
|
240 | (11) |
|
APPENDIX A POSE ESTIMATION |
|
|
251 | (14) |
|
A.1 Point Correspondences |
|
|
251 | (8) |
|
|
253 | (1) |
|
|
253 | (1) |
|
A.1.3 2D-2D and 3D-3D Transforms |
|
|
254 | (2) |
|
A.1.4 DLT Approach for 3D-2D Projections |
|
|
256 | (3) |
|
|
259 | (2) |
|
A.2.1 2D-2D Line Correspondences |
|
|
260 | (1) |
|
A.3 Point and Line Correspondences |
|
|
261 | (1) |
|
A.4 Computation of the Projective DLT Matrices |
|
|
262 | (3) |
|
APPENDIX B POSE REPRESENTATION |
|
|
265 | (16) |
|
B.1 Poses Without Rotation |
|
|
265 | (3) |
|
|
266 | (1) |
|
B.1.2 Translation and Uniform Scale |
|
|
267 | (1) |
|
B.1.3 Translation and Nonuniform Scale |
|
|
267 | (1) |
|
B.2 Parameterizing Rotations |
|
|
268 | (4) |
|
B.3 Poses with Rotation and Uniform Scale |
|
|
272 | (3) |
|
|
272 | (1) |
|
B.3.2 Rotation and Uniform Scale |
|
|
273 | (1) |
|
B.3.3 Euclidean (Rigid Body) Transform |
|
|
274 | (1) |
|
|
274 | (1) |
|
|
275 | (2) |
|
B.5 Poses with Rotation and Nonuniform Scale |
|
|
277 | (1) |
|
B.6 General Homography: The DLT Algorithm |
|
|
278 | (3) |
Nomenclature |
|
281 | (4) |
Bibliography |
|
285 | (10) |
Index |
|
295 | |